基于独立分量分析的眼电伪迹去除方法研究  被引量:5

The Research on the Removal Method of Electrooculogram Artifacts Based on Independent Component Analysis

在线阅读下载全文

作  者:耿晓中[1] 李得志 GENG Xiao-zhong(School of Computer Technology and Engineering,Changchun Institute of Technology,Changchun 130012,China)

机构地区:[1]长春工程学院计算机技术与工程学院,长春130012

出  处:《长春工程学院学报(自然科学版)》2020年第1期78-81,共4页Journal of Changchun Institute of Technology:Natural Sciences Edition

基  金:吉林省科技厅项目(20190302110GX)。

摘  要:脑电信号极易受到眼电信号的干扰,这会导致脑电信号处理结果与实际情况发生较大的偏差,因此,去除包含于脑电信号中的眼电成分是信号预处理的一个重要操作。研究了独立成分分析理论及概要模型,提出一种基于Informax的优化ICA方法,对混入脑电信号中的眼电信号进行辨别、分离、重构,实验结果表明该方法能够准确地从混合信号中区分出眼电伪迹的独立成分,进而实现对原脑电信号的特征增强。The recorded Electroencephalography(EEG)signals are easily contaminated by ocular artifacts,which results in a large deviation between the results of processing EEG signal and the actual situation.Therefore,the removal of electrooculogram artifacts components contained in EEG signals is an important operation during signal preprocessing.In this paper,the theory and the principle model of independent component analysis(ICA)are studied.An optimization ICA method based on Informax is proposed to identify,separate and reconstruct electrooculogram artifacts which mixed with EEG signals.The experimental results show that this method can accurately distinguish the independent components of electrooculogram artifacts from the mixed EEG signals,so as to realize the enhanced features of the original EEG signals.

关 键 词:脑电信号 眼电伪迹 独立成分分析 信息极大化 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象