Abelian quotients and orbit sizes of linear groups  

在线阅读下载全文

作  者:Thomas Michael Keller Yong Yang 

机构地区:[1]Department of Mathematics,Texas State University,San Marcos,TX 78666,USA [2]Key Laboratory of Group and Graph Theories and Applications,Chongqing University of Arts and Sciences,Chongqing 402160,China

出  处:《Science China Mathematics》2020年第8期1523-1534,共12页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China(Grant No.11671063);a grant from the Simons Foundation(Grant No.280770 to Thomas M.Keller);a grant from the Simons Foundation(Grant No.499532 to Yong Yang)。

摘  要:Let G be a finite group,and let V be a completely reducible faithful finite G-module(i.e.,G≤GL(V),where V is a finite vector space which is a direct sum of irreducible G-submodules).It has been known for a long time that if G is abelian,then G has a regular orbit on V.In this paper we show that G has an orbit of size at least|G/G′|on V.This generalizes earlier work of the authors,where the same bound was proved under the additional hypothesis that G is solvable.For completely reducible modules it also strengthens the 1989 result|G/G′|<|V|by Aschbacher and Guralnick.

关 键 词:abelian quotients orbits of group actions linear groups 

分 类 号:O152.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象