Speech Enhancement Based on Approximate Message Passing  被引量:1

在线阅读下载全文

作  者:Chao Li Ting Jiang Sheng Wu 

机构地区:[1]School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China

出  处:《China Communications》2020年第8期187-198,共12页中国通信(英文版)

基  金:supported by National Natural Science Foundation of China(NSFC)(No.61671075);Major Program of National Natural Science Foundation of China(No.61631003)。

摘  要:To overcome the limitations of conventional speech enhancement methods, such as inaccurate voice activity detector(VAD) and noise estimation, a novel speech enhancement algorithm based on the approximate message passing(AMP) is adopted. AMP exploits the difference between speech and noise sparsity to remove or mute the noise from the corrupted speech. The AMP algorithm is adopted to reconstruct the clean speech efficiently for speech enhancement. More specifically, the prior probability distribution of speech sparsity coefficient is characterized by Gaussian-model, and the hyper-parameters of the prior model are excellently learned by expectation maximization(EM) algorithm. We utilize the k-nearest neighbor(k-NN) algorithm to learn the sparsity with the fact that the speech coefficients between adjacent frames are correlated. In addition, computational simulations are used to validate the proposed algorithm, which achieves better speech enhancement performance than other four baseline methods-Wiener filtering, subspace pursuit(SP), distributed sparsity adaptive matching pursuit(DSAMP), and expectation-maximization Gaussian-model approximate message passing(EM-GAMP) under different compression ratios and a wide range of signal to noise ratios(SNRs).

关 键 词:speech enhancement approximate message passing Gaussian model expectation maximization algorithm 

分 类 号:TN912.35[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象