基于Copula函数的长洲水利枢纽年最大洪水联合分布研究  被引量:1

Study on the Joint Distribution of Annual Maximum Flood of Changzhou Reservoir Based on Copula Function

在线阅读下载全文

作  者:黄锋[1,2] 侯贵兵 易灵 李媛媛[1,2] 王保华 HUANG Feng;HOU Guibing;YI Ling;LI Yuanyuan;WANG Baohua(China Water Resources Pearl River Planning,Surveying&Designing Co.,Ltd.,Guangzhou 510610,China;Dispatching Research Center of Pearl River Basin Flood Control and Drought Relief Headquarters,Guangzhou 510610,China)

机构地区:[1]中水珠江规划勘测设计有限公司,广东广州510610 [2]珠江流域防汛抗旱总指挥部调度研究中心,广东广州510610

出  处:《人民珠江》2020年第8期21-25,33,共6页Pearl River

基  金:“高度城镇化地区防洪排涝实时调度关键技术研究与示范”(2018YFC1508200)。

摘  要:年最大洪水量级和发生时间对水库安全防洪、综合效益发挥具有重要的意义。以长洲水利枢纽为例,采用Von Mises函数分布拟合洪水发生的时间概率分布,采用皮尔逊Ⅲ型函数拟合洪峰流量的概率分布,采用Frank Copula函数建立年最大洪水发生时间和洪峰流量两变量的联合分布,分析了长洲水利枢纽年最大洪水事件发生时间分布特征、联合重现期以及条件重现期。结果表明,Frank Copula函数建立的联合分布函数能够较好地拟合长洲水利枢纽年最大洪水两变量分布特征,可有效挖掘入库洪水信息,为水库优化调度和风险决策提供参考。The annual maximum flood magnitude and occurrence time are of great significance to the safe flood control and comprehensive benefits of reservoirs.Taking Changzhou reservoir as the example,this paper uses Von Mises function distribution and Pearson TypeⅢdistribution to describe the time probability distribution of flood and probability distribution of peak discharge respectively,establishes the joint distribution of the two variables of the occurrence time and magnitudes of the annual maximum flood based on Frank Copula function,and describes the occurrence time distribution characteristics,joint return period and conditional return period of annual maximum flood in Changzhou reservoir.The results show that the joint distribution function based on Frank Copula function can fit both occurrence time and magnitudes of the annual maximum flood well,and can effectively mine the information of inflow flood,which can provide reference for the optimal dispatching and risk management.

关 键 词:COPULA函数 两变量联合分布 年最大洪水 长洲水利枢纽 

分 类 号:TV121[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象