检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘云鹏[1,2] 和家慧 许自强[1] 王权 李哲[1] 高树国 LIU Yunpeng;HE Jiahui;XU Ziqiang;WANG Quan;LI Zhe;GAO Shuguo(Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense,North China Electric Power University,Baoding 071003,China;State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources,North China Electric Power University,Beijing 102206,China;State Grid Hebei Electric Power Research Institute,Shijiazhuang 050021,China)
机构地区:[1]华北电力大学河北省输变电设备安全防御重点实验室,保定071003 [2]华北电力大学新能源电力系统国家重点实验室,北京102206 [3]国网河北省电力有限公司电力科学研究院,石家庄050021
出 处:《高电压技术》2020年第7期2522-2529,共8页High Voltage Engineering
基 金:国家电网有限公司总部科技项目(基于多元信息融合的大型电力变压器健康管理及故障预警)(5204DY170010)。
摘 要:在变压器故障诊断领域,数据集不平衡性带来的极端值、噪声等问题严重影响了分类算法的故障识别能力。为此,提出了一种基于支持向量机(supportvectormachine,SVM)合成少数类过采样(syntheticminority over-samplingtechnique,SMOTE)算法的电力变压器故障样本均衡化方法,并结合机器学习进行故障诊断,以解决不平衡数据集下变压器故障诊断整体精度低的问题。首先,从原理、特点、应用等方面对传统SMOTE算法和SVM SMOTE算法进行了大量研究和分析;然后,以变压器油中溶解气体为样本集,构建了基于故障样本均衡化的变压器故障诊断模型;最后,对所提方法进行了算例仿真。结果显示:相较于传统变压器故障诊断算法,采用SVMSMOTE算法对故障样本进行均衡化后,各评价指标均有大幅提升,其中整体分类准确度αmacro-F1提升了18.9%。研究结果证明所提方法可以有效解决不平衡数据集下变压器故障样本漏判率高的问题,并在其分类上具有更高的精度。In the field of transformer fault diagnosis,the extreme values and noise caused by the imbalance of a data set have seriously affected the fault recognition ability of the classification algorithm.Therefore,a method of power transformer fault sample equalization based on the support vector machine(SVM)synthetic minority over-sampling technique(SMOTE)algorithm is proposed,and machine learning is combined for fault diagnosis to effectively solve the problem of low overall-precision of transformer fault diagnosis under the unbalanced data set.Firstly,the traditional SMOTE algorithm and SVM SMOTE algorithm from the aspects of principle,characteristics,and application were researched and analyzed in detail Then,the gas concentration dissolved in transformer oil was taken as a sample set,and the transformer fault diagnosis model based on fault sample equalization was constructed.Finally,simulation study was carried out.The result shows that,compared with traditional transformer fault diagnosis,the evaluation indexes have been greatly improved after fault sample equalization with SVM SMOTE,and theαmacro-F1,namely,overall accuracy,has increased by nearly 18.9%.The research results prove that the proposed method can be adopted to effectively solve the problem of high missing report ratio of transformer fault sample under unbalanced data set,and outperform traditional classification algorithms with respect to accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.147.59.186