超声滚挤压表面硬度预测模型研究  被引量:7

STUDY ON PREDICTION MODEL OF SURFACE HARDNESS IN ULTRASOUND ROLLING EXTRUSION

在线阅读下载全文

作  者:王晓强[1,2] 阮孝林 崔凤奎 刘飞[1,2] WANG XiaoQiang;RUAN XiaoLin;CUI FengKui;LIU Fei(School of Mechatronics Engineering,Henan University of Science and Technology,Luoyang 471003,China;Collaborative Innovation Center of Machinery Equipment Advanced Manufacturing of Henan Province,Luoyang 471003,China)

机构地区:[1]河南科技大学机电工程学院,洛阳471003 [2]河南省机械装备先进制造协同创新中心,洛阳471003

出  处:《机械强度》2020年第4期811-816,共6页Journal of Mechanical Strength

基  金:国家自然科学基金项目(51475146,51075124)资助。

摘  要:表面硬度是评价表面加工质量的一项重要指标,超声滚挤压强化加工技术对于表面强化具有十分显著的作用。以42CrMo轴承钢为对象,对超声滚挤压正交实验结果进行了极差分析,得到了工艺参数对表面硬度的作用显著性大小,运用k折交叉验证法,充分考虑模型的拟合能力和预测能力,分段对比分析了BP神经网络模型和逐步回归模型的可靠度和精确性。结果表明,逐步回归模型的验证误差分布范围和平均误差更小,具有更高的预测精度;最终所建的表面硬度预测模型整体及系数显著性强,能够应用于超声滚挤压加工表面质量的优化提高研究中。Surface hardness is an important index for evaluating the quality of surface processing.Ultrasonic rolling and extrusion technology plays a very significant role in surface strengthening.Taking 42 CrMo bearing steel as the object,the range analysis was carried out on the orthogonal experiment results of ultrasonic rolling extrusion,and the significance of process parameters on surface hardness was obtained.The reliability and accuracy of BP neural network model and stepwise regression model were compared and analyzed in sections by using k-fold cross validation method.This process fully considers the fitting ability and prediction ability of the model.The results show that the validation error range and average error of the stepwise regression model are smaller,and the prediction accuracy of the model is higher.Finally,the established prediction model of surface hardness has strong overall and coefficient significance,which can be applied to the optimization and improvement of surface quality in ultrasonic rolling extrusion.

关 键 词:超声滚挤压 BP神经网络 逐步回归 预测模型 表面硬度 

分 类 号:TH16[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象