一种非协作通信信号特征提取方法  被引量:4

A method of non-cooperative communication signals feature extraction

在线阅读下载全文

作  者:刘朝阳 王安义[2] 李蓉 LIU Zhao-yang;WANG An-yi;LI Rong(College of Energy Science and Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;College of Communication and Information Engineering,Xi’an University of Science and Technology,Xi’an 710054,China)

机构地区:[1]西安科技大学能源学院,陕西西安710054 [2]西安科技大学通信与信息工程学院,陕西西安710054

出  处:《西安科技大学学报》2020年第4期706-711,共6页Journal of Xi’an University of Science and Technology

基  金:国家自然科学基金青年科学基金项目(61801372)。

摘  要:在非协作通信中,如何在低信噪比的衰落信道下,从截获的信号中提取特征参数,从而准确的判别其调制方式是研究的重点。特征参数的高阶累积量可以去除噪声干扰,针对当前非协作通信领域中低信噪比下调制识别率不高的问题,结合高阶累积量的自身特性,提出新的信号特征提取方法。以Nakagami信道为例,以信号的四阶累积量作为特征参量,并对四阶累积量进行分类门限的划分,主要讨论BPSK,8PSK和16QAM这3种信号在不同符号数下的准确识别率。仿真表明,8PSK在符号数为500时,在信噪比为-5 dB到0 dB的高斯白噪声信道下,识别率在90%以上。In non-cooperative communication,channel quality is poor and signal fading is serious.In the low SNR fading channel,how to extract the characteristic parameters from the intercepted signal so as to accurately distinguish its modulation mode,is the focus of this paper.The high-order cumulant of the feature parameters can remove the noise interference.Aiming at the problem that the modulation recognition rate is not high under the low SNR in the current non-cooperative communication field,a new signal feature extraction method is proposed with the characteristics of the high-order cumulant in view.In this paper,taking Nakagami channel as an example,the fourth-order cumulant of signal is taken as the characteristic parameter,and the classification threshold of the fourth-order cumulant is divided.Simulation results show that the recognition rate of 8PSK is more than 90%when the number of symbols is 500 and the SNR is-5 dB to 0 dB.When the signal-to-noise ratio is greater than 10 dB,the modulation recognition rate is 100%.

关 键 词:调制识别率 衰落信道 特征提取 高阶累积量 

分 类 号:TN91[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象