检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李荟 王福利[1,2] 李鸿儒 LI Hui;WANG Fu-Li;LI Hong-Ru(College of Information Science and Engin eering,Northeast-ern University,Shenyang 110819;State Key Laboratory of Process Industry Automation,Ministry of Education,North-eastern University,Shenyang 110819)
机构地区:[1]东北大学信息科学与工程学院,沈阳110819 [2]东北大学流程工业综合自动化国家重点实验室,沈阳110819
出 处:《自动化学报》2020年第7期1411-1419,共9页Acta Automatica Sinica
基 金:国家自然科学基金(61533007,61873049);国家重点研发计划(2017YFB0304205)资助。
摘 要:本文提出了基于多源信息融合的电熔镁炉异常工况识别及自愈控制方法.通过分析与三种异常相关的专家知识及操作经验,本文提取了与异常工况相关的多源信息.通过融合多源信息,建立了用于异常工况识别的贝叶斯网络模型.根据异常工况的识别结果,利用剩余生命时间与控制变量调整量间的关系获得自愈控制措施.仿真结果表明提出的方法能够实现异常工况识别,并且能够区分严重程度,制定相应的自愈控制方案,获得比现有方法更好的性能.In this paper,the abnormal condition identification and self-healing scheme is proposed based on the multisource information fusion.By analyzing the expert knowledge and the experience of operators related with the abnormities,the related multi-source characteristics are extracted.The Bayesian networks are established to identify the abnormities by fusing the multi-source information.Based on the identification results,the self-healing control scheme can be obtained by the relationship between the remaining lifetime and the adjustment of control variables.The simulation results show that the proposed method is effective to identify the abnormal conditions and distinguish the abnormal degree.The corresponding self-healing control scheme can be made to remove the abnormal conditions.The proposed method owns the better performance than the existing research results.
关 键 词:电熔镁炉 多源信息融合 异常工况识别 贝叶斯网络 自愈控制
分 类 号:TQ175.1[化学工程—硅酸盐工业]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7