有偏最小最大概率模型及在汽油属性预测中的应用  被引量:1

Biased minimax probability model and its application in prediction of gasoline properties

在线阅读下载全文

作  者:贺凯迅 刘晶晶 王小邦 苏照阳 HE Kai-xun;LIU Jing-jing;WANG Xiao-bang;SU Zhao-yang(College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao Shandong 266590,China;Key Laboratory of Advanced Control and Optimization for Chemical Processes,East China University of Science and Technology,Shanghai 200237,China)

机构地区:[1]山东科技大学电气与自动化工程学院,山东青岛266590 [2]华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海200237

出  处:《控制理论与应用》2020年第8期1799-1807,共9页Control Theory & Applications

基  金:国家自然科学基金项目(61803234,61873149,61751307);山东省自然科学基金项目(ZR2017BF026);中国博士后科学基金项目(2018M632691);山东省泰山学者项目研究基金项目资助.

摘  要:汽油属性的在线预测多采用无偏估计方法建立的近红外定量分析模型实现,累积预测误差的正负偏差范围难以控制,这会严重影响汽油调合优化控制的投运效果.针对这一问题,本文提出了一种采用有偏估计实现油品属性在线预测的方法.首先从最小最大概率学习机出发,提出了有偏最小最大概率回归模型.然后利用即时学习方法设计了有偏回归模型的局部建模与更新策略,用以提高回归模型的自适应能力.最后在国内某炼厂汽油调合过程中采集的工业数据上进行实验,结果表明该方法与传统方法相比具有明显优势,有利于大幅度提高调合优化控制的投运率.The online prediction of gasoline properties is mostly realized by the near-infrared quantitative analysis model which established by the unbiased estimation method.However,the range of the positive and negative deviations of the cumulative prediction error is difficult to control,which will seriously affect the operation of gasoline blending optimization control.To deal with this issue,a biased estimation method is proposed for the online prediction of gasoline properties.Firstly,a biased minimax probability regression model is proposed based on minimax probability machine.Then,based on just-in-time learning approach,a local modeling and updating strategy is developed for the biased regression model to improve its adaptive ability.Finally,experiments are carried out with the gasoline data collected from a domestic oil refinery.The results show that the present method has obvious advantages compared with traditional algorithms,and it is beneficial to improve the operation rate of the optimal control system of gasoline blending.

关 键 词:汽油调合 最小最大概率机 动态建模 机器学习 过程系统 

分 类 号:TE626.21[石油与天然气工程—油气加工工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象