一种新型状态监测系统的算法设计及实例分析  

The Algorithm Design and Case Studies for the New Generation Condition Monitoring Systems

在线阅读下载全文

作  者:朱俊达 王栋 ZHU Junda;WAND Dong(Renewable NRG Systems,Hinesburg,VT;Zhong Neng Power-Tech Development Co.,Ltd.,Beijing 102209,China)

机构地区:[1]Renewable NRG Systems,Hinesburg,VT [2]中能电力科技开发有限公司,北京102209

出  处:《风力发电》2020年第1期53-59,52,共8页Wind Power

摘  要:随着振动分析技术的普及,越来越多的风场为了达到最大化降低维护成本的目的,积极地转变了风机群的维护理念。基于振动的状态监控技术可以提供部件潜在故障的早期预警。风电场维护团队通过实时的各个部件的健康状况来积极地调整维护措施。TurbinePHD状态监测系统的算法是一种以时域同步平均为核心的算法体系。本文介绍了这种算法并通过实验平台及现场案例验证了算法的有效性。As the wide spread of vibration analysis technologies in recent days,more and more windfarm sites have swiftly changed the maintenance strategy with the purpose of lowering the operational cost.Vibration based condition monitoring techniques can provide early warning to potential component failure.The wind farm maintenance team can actively schedule maintenance behavior based on the health of individual components of the turbine fleet.TurbinePHD is a condition monitoring system that utilizes Time Synchronous Averaging(TSA)as its core signal processing technique.This article described the algorithm in detail.The effectiveness of the proposed technique was validated via field case studies as well as the laboratory based testing platform.

关 键 词:状态监控系统 时域同步平均法 状态参数 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象