检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:马波[1,2] 苏方健 赵祎 蔡伟东 MA Bo;SU FangJian;ZHAO Yi;CAI WeiDong(College of Mechanical and Electrical Engineering,Beijing University of Chemical Technology,Beijing 100029;Beijing Key Laboratory for Health Monitoring and Self-Recovery of High-End Mechanical Equipment,Beijing University of Chemical Technology,Beijing 100029;Shanghai Aircraft Design and Research Institute,Commercial Aircraft Corporation of China Ltd.,Shanghai 201210,China)
机构地区:[1]北京化工大学机电工程学院,北京100029 [2]北京化工大学高端机械装备健康监控及自愈化北京市重点实验室,北京100029 [3]中国商用飞机有限责任公司上海飞机设计研究院,上海201210
出 处:《北京化工大学学报(自然科学版)》2020年第4期74-80,共7页Journal of Beijing University of Chemical Technology(Natural Science Edition)
摘 要:往复式压缩机、柴油机等复杂机械的振动信号往往呈现较强的非平稳特性,导致传统单特征门限报警法的报警准确率较低。针对该问题,提出一种基于无限学生t混合模型(infinite student’s t-mixture model,iSMM)聚类的机械故障预警方法:首先,通过提取机械振动信号特征构建高维特征空间,并采用iSMM对其进行建模,以描述机械设备的状态;其次,利用基于匹配的KL散度近似算法计算机械设备在历史正常状态和观测状态下的模型间距离;最后,将该距离与基于3σ准则自学习出的报警阈值进行比较,实现故障预警。利用往复式压缩机故障案例对所提方法进行验证,结果表明本文方法较单特征门限报警法报警准确率高且时效性好,可有效地对复杂机械进行故障预警。Due to the non-stationary characteristics of the vibration signals of complex machinery such as reciprocating compressors and gas turbines,the signal feature threshold alarm method has low alarm accuracy.In order to solve this problem,a fault early warning method based on the infinite student’s t-mixture model(iSMM)is proposed.The proposed method first uses iSMM trained by a high-dimensional feature space which is based on the mechanical vibration signal features to describe the change in performance of the equipment.Secondly,the divergence between the normal condition model and the real-time working model is calculated by matching based on approximating KL divergence.Finally,real-time fault early warning for the mechanical equipment is realized by comparing the divergence with the early warning threshold calculated based on the 3σrule of thumb.The proposed method has been validated by using actual failure case data for a reciprocating compressor.The results show that this method has high alarm accuracy and good timeliness.The proposed method can provide effective mechanical fault early warning.
关 键 词:故障预警 机械设备 无限学生t混合模型 无监督学习
分 类 号:TH17[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.74