检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭家寅[1] PENG Jia-yin(School of Mathematics and Information Science,Neijiang Normal University,Neijiang 641100,Sichuan,China)
机构地区:[1]内江师范学院数学与信息科学学院,四川内江641100
出 处:《山东大学学报(理学版)》2020年第7期46-54,共9页Journal of Shandong University(Natural Science)
基 金:国家自然科学基金资助项目(11671284);四川省教育厅科研创新团队基金资助项目(15TD002)。
摘 要:为了解决多量子态的制备问题,首先提出一种构造2n+1-量子纠缠态的方法,并给出其量子线路图。其次,采用2n+1-量子纠缠态为信道,出来远程制备一个任意n-量子赤道纠缠态的方案。该方案在控制者Charlie的协助下,Alice通过多量子投影测量和经典通信,Bob采用简单酉变换就能以100%的概率成功重构任意n-量子赤道态。进一步,通过任意二量子态和任意三量子态的制备的具体实例,说明了上述关于一般多量子赤道纠缠态远程制备协议是可行的。In order to solve the problem of preparing multi-particle states,a method of constructing 2n+1-qubit entangled quantum states is proposed,and its quantum circuit diagram is given.Secondly,a controlled remote preparation protocol for an arbitrary n-qubit equatorial entangled state is proposed by using this 2n+1-qubit entangled states as quantum channel.The protocol shows that under the control of the supervisor Charlie,and Alice uses multi-qubut projection measurement and classical communication,Bob can successfully reconstruct an arbitrary n-qubit equatorial state with 100%probability by using a simple unitary transformation.Furthermore,the feasibility of this protocol for remote preparation of the general multi-qubit equatorial entangled state is explicitly demonstrated by concrete examples of the preparation of arbitrary two-qubit state and arbitrary three-qubit state.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.27.94