检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩庆康 李军[1] HAN Qingkang;LI Jun(School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China)
机构地区:[1]重庆交通大学机电与车辆工程学院,重庆400074
出 处:《合肥工业大学学报(自然科学版)》2020年第8期1015-1019,共5页Journal of Hefei University of Technology:Natural Science
基 金:国家自然科学基金资助项目(51305472);重庆轨道交通车辆系统集成与控制重点实验室资助项目(cstc2015yfpt-zdsys3000)。
摘 要:为了解决锂电池能量管理系统中均衡速率较慢且控制原理复杂的问题,提高锂电池能量管理系统的性能,文章提出了一种以电池组中单体电池之间的荷电状态(state of charge,SOC)差值为控制目标的神经元PID均衡控制算法。在Matlab/Simulink中建立充放电反激式变压器电路拓扑结构,并搭建神经元PID控制算法模型,加入到均衡电路拓扑结构中进行仿真验证。仿真验证结果表明:神经元PID控制电路相比于PID控制电路在充电过程中均衡时间提高了约5.9%,放电过程中均衡时间提高了约26.4%,有效地缩短了单体电池能量达到一致所需要的时间;该神经元算法提高了PID控制的自学习能力,在PID均衡的基础上改善了电路拓扑结构的均衡效率,对进一步完善锂电池能量管理系统具有一定的理论指导意义。In order to solve the problems of slow equalization rate and complicated control principle in the lithium battery energy management system,the performance of the lithium battery energy management system is improved.In this paper,a neuron PID equalization control algorithm is proposed.The control target is the state of charge(SOC)difference between individual cells in a battery pack.The circuit topology of the charge-discharge flyback transformer circuit was established in Matlab/Simulink,and the neuron PID control algorithm model was built.It was added to the equilibrium circuit topology for simulation verification.The results show that during the charging process,the neuron PID control circuit has an equalization time that is approximately 5.9%higher than that of the PID control circuit,and during the discharge process,the neuron PID control circuit has an equalization time that is approximately 26.4%higher than that of the PID control circuit,effectively reducing the time required to achieve consistent cell energy.It can be concluded that the neuron algorithm improves the self-learning ability of PID control,improves the equilibrium efficiency of the circuit topology based on PID equilibrium,and has certain theoretical guidance significance for further improving the lithium battery energy management system.
关 键 词:神经元PID 均衡控制 锂电池 充放电 均衡效率
分 类 号:TM912[电气工程—电力电子与电力传动]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.185.140