基于判别性样本选择的无监督领域自适应方法  被引量:3

Unsupervised Domain Adaptation Method Based on Discriminant Sample Selection

在线阅读下载全文

作  者:吴琳琳 彭国华[1] 延伟东[1] WU Linlin;PENG Guohua;YAN Weidong(School of Mathematics and Statistics, Northwestern Polytechnical University, Xi′an 710072, China)

机构地区:[1]西北工业大学数学与统计学院,陕西西安710072

出  处:《西北工业大学学报》2020年第4期828-837,共10页Journal of Northwestern Polytechnical University

基  金:陕西省自然科学基金(2017JM6026)资助。

摘  要:针对现实中由于训练集与测试集分布不同而导致分类准确率较低的问题,提出基于判别性样本选择的无监督领域自适应方法(简称DSS算法)。为了减少源域和目标域的分布差异,将2个领域样本投影到同一子空间中,并对源域中的样本进行加权,使样本更具有判别性;不同于以往基于样本的概率密度估计方法,通过求解一个二次规划问题得到样本权重,避免了对样本分布进行估计,适用于任何领域且不会受到高维密度估计所造成的维数困扰;最后通过最小化类内距离来实现同类聚集。实验结果表明,该方法提高了数据集的分类准确率且具有较好的鲁棒性。In order to solve the problem that low classification accuracy caused by the different distribution of training set and test set,an unsupervised domain adaptation method based on discriminant sample selection(DSS)is proposed.DSS projects the samples of different domains onto a same subspace to reduce the distribution discrepancy between the source domain and the target domain,and weights the source domain instances to make the samples more discriminant.Different from the previous method based on the probability density estimation of samples,DSS tries to obtain the sample weights by solving a quadratic programming problem,which avoids the distribution estimation of samples and can be applied to any fields without suffering from the dimensional trouble caused by high-dimensional density estimation.Finally,DSS congregates the same classes by minimizing the intra-class distance.Experimental results show that the proposed method improves the classification accuracy and robustness.

关 键 词:样本选择 领域自适应 二次规划 类内距离 分类 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象