检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王坤 毛力[1] 王可[1] 吴萌[1] 王燕妮[1]
机构地区:[1]西安建筑科技大学信息与控制工程学院,陕西710055
出 处:《网络安全技术与应用》2020年第8期63-66,共4页Network Security Technology & Application
基 金:国家自然科学基金(F011504);2019年度陕西省大学生创新创业训练计划项目(S201910703045)。
摘 要:随着神经网络模型的广泛应用,其安全性也日益受到重视,本文主要讨论了基于单像素攻击算法对经典CNN模型在黑盒条件下的对抗性攻击,利用该算法对LeNet和ResNet模型进行对抗性攻击测试,并采用粒子群算法进行优化,经过优化后,在扰动差异度为0.3%条件下,LeNet模型攻击成功率在80%以上,ResNet模型攻击成功率60%以上;同时提出针对性防御,自适应异常像素检测修正算法,可实现对单像素攻击算法产生的低扰动攻击进行有效防御,在扰动差异度为0.1%条件下,防御成功率可以达到80%以上。
关 键 词:单像素攻击 黑盒攻击 自适应异常像素检测修正
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.227.107.69