检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李增刚 王正彦[1] 孙敬成 LI Zenggang;WANG Zhengyan;SUN Jingcheng(College of Electronic Information,Qingdao University,Qingdao,Shandong 266071,China)
出 处:《计算机工程与应用》2020年第17期251-257,共7页Computer Engineering and Applications
摘 要:手写数字逆向传播(Back Propagation,BP)神经网络由输入层、隐藏层、输出层构成。训练数据是MNIST开源手写数字集里60000个样本,BP算法由随机梯度下降算法和反向传播算法构成,采用network小批量数据迭代30次的网络学习过程,训练出合适的权重和偏置。利用现场可编程门阵列(Field Programmable Gate Array,FPGA)硬件平台,Verilog代码实现BP算法、时序控制各层网络训练状态、Sigmoid(S型)函数及导数线性拟合是设计重点。初始化均值为0,方差为1的高斯分布网络权重和偏置,采用小批量数据个数m为10,学习系数η为3,在系统中输入样本及标签利用Quartus13.0和modelsim仿真与分析,工程运行迭代30次时间是4.5 s,样本识别正确率是91.6%,与软件python2.7相比满足了硬件设计的实时性和手写数字识别的高准确率。The handwritten digital BP(Back Propagation)neural network consists of an input layer,a hidden layer,and an output layer.It’s training data is 60,000 samples in the MNIST data set,the BP algorithm consists of a stochastic gradient descent algorithm and back propagation algorithm.The network learning process uses 30 small iterations of small batch data to train appropriate network weights and offsets.It is important to design BP algorithm,timing control layer network state,Sigmoid(S-type)function and its derivative linear fitting in Verilog language by using FPGA(Field Programmable Gate Array)hardware platform.The network weight and offset of Gaussian distribution are initialized with a mean of 0 and a variance of 1,and the input samples and labels of the system are simulated and analyzed in Quartus 13.0 and modelsim.In system,small batch data m is 10,the learning coefficientηis 3,running iteration 30 times is 4.5 s,and recognition correct rate is 91.6%,which satisfies the real-time requirement and has high accuracy.
关 键 词:现场可编程门阵列(FPGA) 逆向传播(BP)神经网络 手写数字 逆向传播(BP)算法 VERILOG语言
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229