马尔科夫链优化Logistic曲线的基坑沉降预测模型  被引量:6

Study on the Foundation Pit Settlement Prediction Model of Logistic Curve Optimized by Markov Chain

在线阅读下载全文

作  者:万虹麟 任刚 WAN Honglin;REN Gang(Department of Water Conservancy, Hebei University of Water Resources and Electric Engineering, Cangzhou 061001, China;Henan Geological Investigation & Designing Institute Co. Ltd., Zhengzhou 450000, China)

机构地区:[1]河北水利电力学院水利工程学院,河北沧州061001 [2]河南省建院勘测设计研究院有限公司,河南郑州450000

出  处:《测绘科学技术学报》2020年第2期166-170,176,共6页Journal of Geomatics Science and Technology

摘  要:针对基坑沉降具有非线性及随机性的特点,建立基于马尔科夫链修正的Logistic曲线预测模型进行基坑沉降预测。基坑监测工程实例应用表明:利用Matlab平台的nlinfit函数进行Logistic曲线参数估计是有效的,将Logistic模型拟合值与观测值的残差用于马尔科夫的状态划分,构造状态转移概率矩阵,建立马尔科夫链优化的Logistic模型,预测均方根误差和平均绝对百分误差都比单一Logistic模型小。这表明该方法用于基坑沉降预测是可行的。Aiming at the nonlinear and stochastic characteristics of the foundation pit settlement,a Logistic curve prediction model based on Markov chain correction is established to improve the prediction accuracy of the model.According to the foundation pit deformation monitoring,it is effective to estimate the Logistic parameters by using the nlinfit function of Matlab platform.The Logistic model fitting value and residuals of observations are used for the state division of Markov process and the construction of the state transition probability matrix,so as to establish the Logistic model optimized by Markov.The root mean square error and the average absolute percentage error of the Logistic model optimized by Markov are smaller than the single Logistic model,which shows that the method can be used for foundation pit settlement prediction and it is feasible.

关 键 词:马尔科夫链 LOGISTIC曲线模型 基坑沉降预测 nlinfit函数 概率矩阵 

分 类 号:P258[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象