A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems  被引量:18

在线阅读下载全文

作  者:Yeteng Zhong Hongjie Dai 

机构地区:[1]Department of Chemistry,Stanford University,Stanford,California 94305,USA

出  处:《Nano Research》2020年第5期1281-1294,共14页纳米研究(英文版)

基  金:supported by the National Institutes of Health(grant no.DP1-NS-105737).

摘  要:Rare-earth(RE)based luminescent probes exhibit rich optical properties including upconversion and down-conversion luminescence spanning a broad spectral range from 300 to 3,000 nm,and have generated great scientific and practical interest from telecommunication to biological imaging.While upconversion nanoparticles have been investigated for decades,down-conversion luminescence of RE-based probes in the second near-infrared(NIR-II,1,000-1,700 nm)window for in vivo biological imaging with sub-centimeter tissue penetration and micrometer image resolution has come into light only recently.In this review,we present recent progress on RE-based NIR-II probes for in vivo vasculature and molecular imaging with a focus on Er3+-based nanoparticles due to the down-conversion luminescence at the long-wavelength end of the NIR-II window(NIR-IIb,1,500-1,700 nm).Imaging in NIR-IIb is superior to imaging with organic probes such as ICG and IRDye800 in the^800 nm NIR range and the 1,000-1,300 nm short end of NIR-II range,owing to minimized light scattering and autofluorescence background.Doping by cerium and other ions and phase engineering of Er^3+-based nanoparticles,combined with surface hydrophilic coating optimization can afford ultrabright,biocompatible NIR-IIb probe towards clinical translation for human use.The Nd^3+-based probes with NIR-II emission at 1,050 and 1,330 nm are also discussed,including Nd^3+doped nanocrystals and Nd^3+-organic ligand complexes.This review also points out future directions for further development of multi-functional RE NIR-II probes for biological imaging.

关 键 词:rare earth DOWN-CONVERSION NEAR-INFRARED biological imaging 

分 类 号:O61[理学—无机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象