检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:涂满红[1] 许九靖 曹云昌[1] 王晓英 赵兴旺 柯福阳 TU Manhong;XU Jiujing;CAO Yunchang;WANG Xiaoying;ZHAO Xingwang;KE Fuyang(Meteorological Observation Center of China Meteorological Administration,Beijing 100081,China;School of Geodesy and Geomatics,Anhui University of Science&Technology,Anhui Huainan 232001,China;School of Remote Sensing and Geomatics Engineering,Nanjing University Information of Science&Technology,Nanjing 210044,China)
机构地区:[1]中国气象局气象探测中心,北京10008 [2]安徽理工大学测绘学院,安徽淮南232001 [3]南京信息工程大学遥感与测绘工程学院,南京210044
出 处:《气象科学》2020年第4期513-519,共7页Journal of the Meteorological Sciences
基 金:国家自然科学基金资助项目(41674036,41704008);江苏省重点研发项目(BE2016020);江苏高校“青蓝工程”。
摘 要:准确获取测站气压和温度对GPS水汽反演至关重要。由于我国地域辽阔、经济和社会发展的差异较大,我国GPS气象站网有部分站点未布设气象传感器,无法准确获取测站的气压和温度,其对测站上方水汽造成了较大影响。本文提出一种增加高度订正的反距离加权法,并利用全国113个GNSS气象站(包括25个实验站点,88个插值站点)的连续3个月的气象数据对该方法进行验证。结果表明,内插得到的气压和温度的均方差为1.53 hPa和1.18 K,平均偏差为0.94 hPa和0.82 K。精度随着内插站点与实验站点之间高差的增大,偏差随之增大。最后将内插得到的气压和温度应用于GPS水汽解算,并与GPT-2模型的精度对比。内插气象数据得到的PWV(Precipitale Water Vapor)的均方差和平均偏差为0.59 mm和0.38 mm,精度明显优于GPT-2模型。The accurate acquisition of station pressure and the temperature is critical to GPS water vapor remote sensing.Due to the vast territory of our country and great differences in economic and social,not all GPS stations are equipped with pressure and the temperature sensors,which leads to the difficulty of GPS water vapor remote sensing.This paper provides an improved inverse distance weighting method adding height correction and this method is validated by three consecutive months of meteorological data from 113 GNSS stations(25 experimental stations,88 interpolation stations).The results show that the root mean square of pressure and temperature with this paper's method are 1.53 hPa and 1.18 K.And the mean deviation of them are 0.94 hPa and 0.82 K.And with the increase of the height difference between the interpolation site and the experimental site,the error are increased.Finally,the interpolated pressure and temperature are applied to remote sensing of atmospheric water vapor.The root mean square of PWV is 0.59 mm,and the mean deviation is 0.38 mm.Compared with GPT-2,this paper's method is better obviously.
关 键 词:GPS 气象要素 反距离加权 GPT-2 可降水量
分 类 号:P228.4[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.192.24