软扩频多址信号盲分离  

Blind Separation of Soft Spread Spectrum Multiple Access Signals

在线阅读下载全文

作  者:张丹娜 闻年成 刘中飞 杨晓静 ZHAGN Danna;WEN Niancheng;LIU Zhongfei;YANG Xiaojing(College of Electronic Countermeasure,National University of Defense Technology,Hefei 230037,China)

机构地区:[1]国防科技大学电子对抗学院,合肥230037

出  处:《空军工程大学学报(自然科学版)》2020年第4期49-54,共6页Journal of Air Force Engineering University(Natural Science Edition)

基  金:国家自然科学基金(61603409)。

摘  要:为解决软扩频信号多址干扰问题,根据不同用户信息彼此独立且扩频码不相关的特点,采用多个接收端接收数据并运用Fast-ICA算法,实现了Walsh码软扩频多址信号盲分离及伪码序列估计。首先根据已知的伪码速率和伪码周期对接收信号进行采样分组,接着利用主分量分析法对分组信号进行降维白化,最后应用Fast-ICA算法实现软扩频多址信号的盲分离和伪码序列估计。仿真结果表明:该算法在一定信噪比范围内能够实现不多于5个用户的Walsh码软扩频多址信号盲分离并估计出伪码序列。In order to solve the problem of multiple access interference of soft spread spectrum signals,this paper adopts the Fast-ICA algorithm to realize the blind separation of soft spread spectrum multi-access signals of Walsh code by taking advantage of the fact that different users’information is independent from each other and spread spectrum codes are not related.The algorithm is used to group the received signals according to the known pseudo-code rate and pseudo-code period,the PCA algorithm is used to realize the dimensionless whitening of the grouped signals to eliminate the correlation between the signals,and finally the Fast-ICA algorithm is used to realize the blind separation of soft spread spectrum multiple access signals and the pseudo-code sequence estimation.The algorithm is characterized by blind separation of soft spread spectrum multiple access signals with known pseudo-code rate and pseudo-code period.The simulation results show that the proposed algorithm can achieve the blind separation of soft spread spectrum multiple access signals and the estimation pseudo-code sequences,which is Walsh code of no more than 5 users in the range of a certain signal noise ratio.

关 键 词:WALSH码 软扩频 多址信号 盲分离 PCA Fast-ICA 

分 类 号:TN911.7[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象