基于高效随机并行梯度下降算法的板条激光光束净化  被引量:10

Slab Laser Beam Cleanup Based on Efficient Stochastic Parallel Gradient Descent Algorithm

在线阅读下载全文

作  者:马士青 杨平[1,2] 赖柏衡 苏春轩 Ma Shiqing;Yang Ping;Lai Boheng;Su Chunxuan(Key Laboratory on Adaptive Optics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China;Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China;University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院自适应光学重点实验室,四川成都610209 [2]中国科学院光电技术研究所,四川成都610209 [3]中国科学院大学,北京100049

出  处:《中国激光》2020年第8期175-182,共8页Chinese Journal of Lasers

基  金:国家自然科学基金(11811530290)。

摘  要:为解决传统随机梯度下降(SPGD)算法参数难以实时调节、收敛速度较慢的难题,提出了一种基于自适应增益及联合指标优化的高效SPGD算法,建立了该算法的数值仿真模型,并将该算法用于千瓦级板条激光器的光束净化。仿真结果表明:与传统SPGD算法相比,提出的算法无需参数调节,且收敛速度和收敛效果均有显著提升,在对千瓦级板条激光器的光束净化实验中,激光光束质量β由7.89优化至1.95。To solve the problems of the difficulty in adjusting parameters in real time and the convergence speed being slow in the traditional stochastic parallel gradient descent(SPGD)algorithm,this study proposes an efficient SPGD algorithm based on adaptive gain and joint index optimization and establishes a numerical simulation model of this algorithm.The proposed algorithm is used for the beam cleaning of kilowatt-class slab lasers.Simulation results show that compared with the traditional SPGD algorithm,the proposed algorithm does not require a parameter adjustment,and the convergence speed and convergence effect are significantly improved.Furthermore,in the beam purification experiment of the kilowatt-class slab laser,the laser beam qualityβis optimized from 7.89 to 1.95 herein.

关 键 词:激光光学 光束净化 板条激光器 自适应光学 随机并行梯度下降算法 

分 类 号:O436[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象