检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吕康娟[1,2] 胡颖 LV Kang-juan;HU Ying(SHU-UTS SILC Business School,Shanghai University,Shanghai 201800,China;School of Economics,Shanghai University,Shanghai 200444,China)
机构地区:[1]上海大学悉尼工商学院,上海201800 [2]上海大学经济学院,上海200444
出 处:《中国管理科学》2020年第8期196-208,共13页Chinese Journal of Management Science
基 金:国家自然科学基金资助项目(71774108)。
摘 要:针对行业间碳排放转移量预测问题,以中国1997-2017年间9年度28个行业间碳排转移量数据为样本,本文提出了基于小样本随机振荡序列的灰色量子粒子群优化通用向量机混合预测模型ROGM-QPSO-GVM。该模型首先使用ROGM(1,1)模型得到各行业对其他行业碳排放转移量的预测序列和残差序列,然后提出了一种新的量子粒子群优化(QPSO)算法优化GVM模型网络参数,构建了QPSO-GVM模型对残差序列进行修正,再将两部分的预测值相加得到行业间碳排放转移量预测值,最后根据所有预测值构建出行业间碳排放转移网络。结果表明ROGM-QPSO-GVM模型与其他模型相比具有更好的预测效果,并利用该模型对2020年、2025年、2030年中国行业间碳排放转移网络进行了预测及变化趋势分析。The state attaches great importance to the carbon emissions reduction of industries.It is shown that the key industries of carbon emissions reduction can be identified by analyzing the carbon emissions transfer network formed by the exchange of intermediate products in industries.Therefore,it is of great significance to establish the forecasting model of carbon emissions transfer between industries and forecast the carbon emissions transfer network.Previous studies have been mainly focused on the prediction oftotal carbon emissions time series,which has a signicantincreasing trend year by year.However,the time series ofinterindustry carbon emissions transfer in China has the characteristicsof small sample,nonlinear,nonmonotoney,volatility and randomness,According to the data characteristics,a hybrid forecasting model of grey quantum particle swarm optimization general vector machine forsmall sample random oscillation sequence(ROGM-QPSO-GVM)is proposed.Firstly,the ROGM(1,1)model is used to obtain the prediction sequence and residual sequence of carbon emissions transfer between different industries.Then a new quantum particle swarm optimization(QPSO)algorithm is proposed to optimize the network parameters of GVM model,and the QPSO-GVM model is constructed to modify the residual sequence,then the prediction values of the two parts are added together to obtain the prediction values of inter-industry carbon emissions transfer network.Finally,an inter-industry carbon emissions transfer network is constructed based on all the predicted values.Empirical analysis is made on the data of carbon emission transfer between 28 industries in China from 1997 to 2017.The results show that the ROGM-QPSO-GVM model has better prediction effect than other models,and China’s inter-industry carbon emissions transfer network in 2020,2025 and 2030 is predicted by this model and the trend is analyzed.It provides a reference for the national policy intervention on industry carbon emissions reduction,and lays a foundation for further clar
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.13