面向5G通信网络的NFV内存资源管理方法  被引量:8

NFV Memory Resource Management in 5G Communication Network

在线阅读下载全文

作  者:苏畅[1] 张定权 谢显中[1] 谭娅 SU Chang;ZHANG Ding-quan;XIE Xian-zhong;TAN Ya(Chongqing Key Laboratory of Computer Network and Communication Technology,Chongqing University of Posts and Telecommunications,Chongqing 400000,China)

机构地区:[1]重庆邮电大学重庆市计算机网络与通信技术重点实验室,重庆400065

出  处:《计算机科学》2020年第9期246-251,共6页Computer Science

基  金:重庆市教委科学技术研究重点项目(KJZD-K201800603)。

摘  要:随着5G研究的深入和商用的推进,出现了各式各样的挑战,其中,5G通信系统的资源管理对于5G网络的研究来说是一个关键性的挑战。网络功能虚拟化技术为5G的实现提供了关键支撑,同时也为5G的资源管理问题引入了新的研究方向,但是网络功能虚拟化场景中的资源管理是一个比较复杂问题。特别地,虚拟网络功能的不同放置位置会为其性能带来不同的影响。文中首先对网络功能虚拟化的资源分配方法及放置对性能的影响进行了分析和研究,在此基础上,主要根据知识定义网络所提出的范例,探讨了将机器学习技术应用于虚拟网络功能内存资源管理的研究,构建神经网络学习模型,预测内存资源消耗。其次,重点对输入流量的特征进行提取,流量主要由一组特征表示,这些特征代表了从数据链路层到传输层的小批次信息,其中的内存消耗是从虚拟机管理程序的性能监测工具上得出的批量的平均内存消耗。最后,利用神经网络模型预测内存资源消耗,从而达到对内存资源进行管理的目的。With the deepening of 5G research and the advancement of commercialization,it also brings various challenges.Among them,the resource management of 5G communication system is a key challenge for the research of 5G network.Network Function Virtualization(NFV)technology provides key support for 5G implementation,and it also introduces new research directions for 5G resource management issues.However,resource management in network function virtualization scenarios is a more complex issue.In particular,different placements of virtual network functions have different effects on their performance.Firstly,this paper analyzed and studied the impact of NFV resource allocation methods and NFV placement on performance.On this basis,this paper mainly discussed machine learning based on the example proposed by Knowledge Definition Network(KDN).The technology is applied to the study of virtual network function memory resource management,constructing a neural network learning model,and predicting memory resource consumption.Secondly,the focus of this paper is on the extraction of the characteristics of the input traffic.The traffic is mainly represented by a set of features,which represent small batches of information from the data link layer to the transport layer,where the memory consumption is from the hypervisor.The average memory consumption of the batch is obtained on the performance monitoring tool.Finally,this paper aimed to manage memory resources by using neural networks to predict memory resource consumption.

关 键 词:5G通信网络 资源管理 网络功能虚拟化 机器学习 内存消耗 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象