基于视频图像分析的地铁列车车辆拥挤度识别方法研究  被引量:10

Subway Train Congestion Degree Recognition Method Based on Video Image Analysis

在线阅读下载全文

作  者:张杏蔓 鲁工圆[1,2] ZHANG Xing-man;LU Gong-yuan(School of Transportation and Logistics,Southwest Jiaotong University,Chengdu 611756,China;National United Engineering Laboratory of Integrated and Intelligent Transportation,Chengdu 611756,China)

机构地区:[1]西南交通大学,交通运输与物流学院,成都611756 [2]综合交通运输智能化国家地方联合工程实验室,成都611756

出  处:《交通运输工程与信息学报》2020年第3期142-152,共11页Journal of Transportation Engineering and Information

基  金:国家重点研发计划(2017YFB1200701);四川省教育厅2018—2020年高等教育人才培养质量和教学改革项目(JG2018-135)。

摘  要:准确掌握地铁车辆内拥挤程度是提高城市轨道交通服务质量的手段之一。本文在对地铁车辆监控视频图像提取与分析的基础上,提出了一种基于卷积神经网络的车辆拥挤度识别方法。该方法使用车辆监控视频建立了车厢乘客数据集,通过提取视频图像检测区域以及人群特征检测来实现地铁列车车辆拥挤度识别。实验结果表明,所提出的方法检测速度快,能够满足实际应用中实时性要求,三级拥挤度分类识别实验准确度为98%,四级拥挤度分类识别实验准确度为87%,其检测结果可辅助城市轨道交通管理者快速掌握线网实时客流拥挤情况。Accurately analyzing and obtaining the congestion levels in subway trains is one way of improving the quality of urban rail transit services.This paper proposes a vehicle congestion recognition method using a convolutional neural network to extract and analyze subway vehicle monitoring video images.This method uses the vehicle monitoring video to build a dataset of passengers in the carriage and uses a convolutional neural network with a cascade structure to realize recognition of subway train vehicle congestion by extracting the detection area of the video image and detecting crowd characteristics.The experiment results demonstrated that our proposed method had a fast detection speed and can meet real-time requirements in practical applications.The accuracy of three-level congestion degree experiment is 98%,and the accuracy of four-level congestion degree experiment is 87%.The test results can assist urban rail transit managers to quickly understand real-time passenger flow congestion in the line network.

关 键 词:城市轨道交通 车厢拥挤度 卷积神经网络 车厢监控视频 

分 类 号:U231[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象