检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苗乃树 王东岳 杨化伟 王树城 卢绪振 Miao Naishu;Wang Dongyue;Yang Huawei;Wang Shucheng;Lu Xuzhen(Shandong Academy of Agricultural Machinery Sciences,Jinan City,Shandong Province 250100,China)
机构地区:[1]山东省农业机械科学研究院,山东省济南市250100
出 处:《农业装备与车辆工程》2020年第9期131-134,共4页Agricultural Equipment & Vehicle Engineering
摘 要:提出了一种基于卷积稀疏滤波和Hilbert包络谱的齿轮微弱故障检测方法。该方法通过稀疏特征学习,提取强噪声样本中的微弱故障信息,提高故障信号的信噪比,最后通过时域波形和Hilbert包络谱的特征频率及其谐波,判断轴承的故障信息。通过仿真和试验信号,验证了该方法的有效性,与经典的MED算法相比,提出的方法具有更强的噪声适应能力。This paper proposes a novel weak signature detection method based on convolutional sparse filtering and Hilbert envelope spectrum for rolling bearing fault diagnosis.The proposed method can extract the weak fault information from samples with strong noise interference through the sparse feature learning process.The signal to noise ratio(SNR)of the filtered signal is obviously improved.Finally,we can detect the fault information using the time domain waveform and envelope spectrum of the filtered signal.The proposed method is verified using simulated and experimental rolling bearing fault data.The results show that the proposed method has been found to be a promising tool for impulsive feature enhancement.Compared with MED,the proposed method performs superior noise adaptability.
关 键 词:无监督学习 稀疏滤波 微弱信号增强 Hilbert包络解调
分 类 号:TH133.3[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.111.209