检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨玉亭 冯林[1] 代磊超 苏菡[1] YANG Yuting;FENG Lin;DAI Leichao;SU Han(College of Computer Science,Sichuan Normal University,Chengdu 610101)
机构地区:[1]四川师范大学计算机科学学院,成都610101
出 处:《模式识别与人工智能》2020年第8期753-765,共13页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金项目(No.61876158)资助。
摘 要:针对现有的方面级情感分类模型存在感知方面词能力较弱、泛化能力较差等问题,文中提出面向上下文注意力联合学习网络的方面级情感分类模型(CAJLN).首先,利用双向Transformer的表征编码器(BERT)模型作为编码器,将文本句子预处理成句子、句子对和方面词级输入序列,分别经过BERT单句和句子对分类模型,进行上下文、方面词级和句子对隐藏特征提取.再基于上下文和方面词级隐藏特征,建立上下文和方面词的多种注意力机制,获取方面特定的上下文感知表示.然后,对句子对隐藏特征和方面特定的上下文感知表示进行联合学习.采用Xavier正态分布对权重进行初始化,确保反向传播时参数持续更新,使CAJLN在训练过程中可以学习有用信息.在多个数据集上的仿真实验表明,CAJLN可有效提升短文本情感分类性能.To solve the problems of weak perception for aspect words and generalization ability in the existing models for sentiment classification,a context-oriented attention joint learning network for aspect-level sentiment classification(CAJLN)is proposed.Firstly,the bidirectional encoder representation from transformers(BERT)model is employed as the encoder to preprocess short texts into sentences,sentence pairs and aspect words as input,and their hidden features are extracted through the single sentence and sentence pair classification models,respectively.Then,based on the hidden features of sentences and aspect words,attention mechanisms for sentences and aspect words are established to obtain aspect-specific context-aware representation.Then,the hidden features of sentence pairs and aspect-specific context-aware representations are learned jointly.Xavier normal distribution is utilized to initialize the weights.Thus,the continuous updating of the parameters during the back propagation is ensured,and useful information is learned by CAJLN in the training process.Experiments show that CAJLN effectively improves the performance of sentiment classification for short text on multiple datasets.
关 键 词:方面级情感分类 双向Transformer的表征编码器(BERT)模型 注意力机制 联合学习
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28