检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜珊 张建华[1] 吕晓玲[1] 张小俊[1] DU Shan;ZHANG Jianhua;LV Xiaoling;ZHANG Xiaojun(School of Mechanical Engineering,Hebei University of Technology,Tianjin 300130,China)
出 处:《机床与液压》2020年第17期5-10,15,共7页Machine Tool & Hydraulics
基 金:天津市科技计划项目(15ZXZNGX00080)。
摘 要:在手眼标定过程中,获取的机械臂和标定板图像数据对手眼标定的结果影响非常大。若获取的数据不理想,标定结果可能存在较大的误差。针对在线手眼标定过程中,需要自动控制机械臂采集有效图像的问题,提出了一种基于分块图像直方图的标定板方位分析方法。采用该方法对图像进行分块处理,为获得图像方位信息提供依据;提取分块图像的直方图,并根据二级高斯拟合方法得到峰值、峰值位置以及半宽信息;通过对比阈值与峰值位置并求解峰面积,得到标定板的方位信息,为机械臂下一步的运动提供指导。实验结果表明:采用该方法可以准确判断标定板的方位,提高标定板图像采集的效率和准确度。In the process of hand⁃eye calibration,the obtained data of the robot arm and the calibration board image have a great influence on the result of the hand⁃eye calibration.If the acquired data are not accurate,the calibration result may have a large error.Aimed at the problem that it is necessary to automatically control the robot arm to collect effective images in the process of on⁃line hand⁃eye calibration,an azimuth analysis method of calibration board based on block image histogram was presented.The method was used to block the image,which provided basis for obtaining the image azimuth information.The histogram of the block image was extracted,and the peak,peak position and half⁃width information were obtained according to the second⁃order Gaussian fitting method.The peak position was compared with the threshold,and the peak area was solved to obtain the azimuth information of the calibration board,which provided guidance for the next movement of the robot arm.The experiment results show that by using the method,the azimuth of the calibration board can be accurately determined,and the efficiency and accuracy of calibration board image collection can be improved.
关 键 词:分块图像直方图 高斯拟合 在线手眼标定 图像方位
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.134.62