Oscillation and variation for Riesz transform in setting of Bessel operators on H1 and BMO  

在线阅读下载全文

作  者:Xiaona CUI Jing ZHANG 

机构地区:[1]College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China [2]School of Mathematics and Statistics,Yili Normal University,Yining 835000,China

出  处:《Frontiers of Mathematics in China》2020年第4期617-647,共31页中国高等学校学术文摘·数学(英文)

基  金:This work was supported in part by the Doctoral Scientific Research of Yili Normal University(No.2017YSBS09).

摘  要:Letλ〉0,and let the Bessel operator△λ:=-d2/dx2-2λ/x d/dx defined on R+:=(0,∞).We show that the oscillation andρ-variation operators of the Riesz transform R△λassociated with△λare bounded on BMO(R+,dmλ),whereρ>2 and dmλ=x2λdx.Moreover,we construct a(1,∞)△λ-atom as a counterexample to show that the oscillation andρ-variation operators of R△λare not bounded from to L1(R+,dmλ).Finally,we prove that the oscillation and theρ-variation operators for the smooth truncations associated with Bessel operators R~△λare bounded from H1(R+:dmλ)to L1(R+,dmλ).

关 键 词:Oscillation operator variation operator Bessel operator 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象