Existence and finite-time stability of a unique almost periodic positive solution for fractional-order Lasota Wazewska red blood cell models  

在线阅读下载全文

作  者:Yongkun Li Yaolu Wang Bing Li 

机构地区:[1]Department of Mathematics,Yunnan University Kuming,Yunan650091,P.R.China [2]School of Mathermatics and Computer Science YunnanNatioralities Uiversity,Kunming Yunnan 650500,P.R.China

出  处:《International Journal of Biomathematics》2020年第2期103-118,共16页生物数学学报(英文版)

基  金:the National Natural Sciences Foundation of People's Republic of China under Grants Nos.11861072 and 11361072;the Applied Basic Research Programs of Science and Technology Department of Yunnan Province under Grant No.2019FBO03.

摘  要:In this paper,we are concerned with a class of fractional-order Lasota-Wazewska red blood ccll modcls.By applying a fixed point theorem on a normal cone,we first obtain the sufficient conditions for the existence of a unique almost periodic positive solution of the considered models.Then,considering that all of the red blood cells in animals survive in a finite-time interval,we study the finite-time stability of the almost periodic positive solution by using some inequality techniques.Our results and methods of this paper are new.Finally,we give numerical examples to show the feasibility of the obtained results.

关 键 词:Fractional-order Lasota-Wazewska red blood cell models almost periodic positive solutions fixed point theorem in cones finite-time stability 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象