基于大数据的多媒体弱关联数据智能压缩方法研究  被引量:6

Research on multimedia weakly-associated data intelligent compression method based on big data

在线阅读下载全文

作  者:龙虎 张小梅 LONG Hu;ZHANG Xiaomei(School of Big Data Engineering,Kaili University,Kaili 556011,China)

机构地区:[1]凯里学院大数据工程学院,贵州凯里556011

出  处:《现代电子技术》2020年第19期102-105,110,共5页Modern Electronics Technique

基  金:贵州省教育厅自然科学研究资助项目:基于拟态计算的高效能大数据应用平台构建研究(黔教合KY字[2018]356);贵州省科技厅联合基金资助项目(黔科合LH字[2014]7229)。

摘  要:多媒体原始数据总量巨大,给信号的存储及传输带来很大困难,致使数据弱关联能力不断降低,为解决此问题,提出基于大数据的多媒体弱关联数据智能压缩方法。利用弱关联数据挖掘结果构建大数据查询集合,并对相关多媒体数据进行修补,完成基于大数据的多媒体弱关联数据查询。在此基础上,量化处理智能数据块,根据弱关联数据集的映射结果,确定压缩序列,实现基于大数据多媒体弱关联数据智能压缩方法的建立。对比实验结果表明,与一般性压缩方法相比,应用智能压缩方法后,信号数据的存储总量得到提升,单位传输速率也得到适当促进,为维护多媒体原始数据的弱关联能力提供了保障。In order to solve the problem that the huge amount of multimedia original data has brought great difficulties to the storage and transmission of signals,resulting in the continuous decline of weak correlation ability of data,a multimedia weakly-associated data intelligent compression method based on big data is proposed.The results of weakly-associated data mining is adopted to build the big data query set,repair the related multimedia data,and complete the multimedia weakly-associated data query based on big data.On this basis,the intelligent data blocks are processed quantitatively,and the compression sequences are determined according to the mapping results of weakly-associated data sets,so as to realize the establishment of the multimedia weakly-associated data intelligent compression method based on big data.The results of contrast experiment show that,in comparison with the general compression methods,the intelligent compression method can increase the total storage amount of signal data,promote the unit transmission rate appropriately,and provide a guarantee for the weak correlation ability of multimedia original data.

关 键 词:数据智能压缩 弱关联数据查询 大数据 数据挖掘 数据修补 量化处理 压缩序列确定 

分 类 号:TN919.5-34[电子电信—通信与信息系统] TP397[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象