电能计量器具自动检定混合流水线调度优化研究  

Research on Scheduling Optimization for the Automatic Verification on the Mixed Flow-shop of the Electric Energy Metering Equipment

在线阅读下载全文

作  者:刘岑岑 孙祥 蔡文嘉 夏天 罗冰冰 LIU Cencen;SUN Xiang;CAI Wenjia;XIA Tian;LUO Bingbing(State Grid Hubei Electric Power Company Measurement Center,Wuhan 430080,China;School of Mechanical and Electrical Engineering,Wuhan University of Technology,Wuhan 430070,China)

机构地区:[1]国网湖北省电力公司计量中心,湖北武汉430080 [2]武汉理工大学机电工程学院,湖北武汉430070

出  处:《仪表技术》2020年第8期7-12,21,共7页Instrumentation Technology

基  金:湖北省技术创新专项重大项目(2018AAA049)。

摘  要:为提高电能计量自动化终端检测流水线检定效率,建立了以总检定时间最短为优化目标的调度模型,并提出了一种改进进化变邻域混合算法进行模型求解。针对流水线的具体特点,采用一种基于排列的编码方式,并针对并行机选择设计了相应的启发式解码规则;在进化过程中加入扰动种群,提高种群的多样性;将进化算法得到的精英解作为变邻域搜索算法的初始解,并针对问题特点设计了相应的邻域结构,防止种群陷入局部最优以提高混合算法的寻优能力。最后,基于某省级检定中心的具体实例进行数值仿真验证所提混合批组检定策略和调度算法的有效性和优越性。A scheduling optimization model with the shortest total verification time is established to improve the efficiency of the automatic verification flow-shop, and an improved genetic-VNS hybrid algorithm is proposed to solve it. According to the characteristics of the automatic verification flow-shop, an alignment-based encoding method is proposed. The corresponding heuristic decoding rules are designed for parallel machine selection. In the process of evolution, the disturbed population is added to improve the diversity of the population. The elite solution obtained by the evolutionary algorithm is used as the initial solution of the variable neighborhood search algorithm and the corresponding neighborhood structure is designed according to the characteristics of the problem to prevent the population from falling into local optimum, and improve the search ability of hybrid algorithms. Finally, A practical case in a provincial verification center is carried out to demonstrate the effectiveness of the proposed model and hybrid algorithm.

关 键 词:混合流水线 改进进化变邻域混合算法 混合批组检定 

分 类 号:TM73[电气工程—电力系统及自动化] TM933.4

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象