检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张永顺 朱卫纲 钱昭勇 贾鑫 ZHANG Yongshun;ZHU Weigang;QIAN Zhaoyong;JIA Xin(Unit 32039 of PLA,Beijing 102308,China;Department of Electronic and Optical Engineering,Space Engineering University,Beijing 101416,China;Graduate School,Space Engineering University,Beijing 101416,China)
机构地区:[1]解放军32039部队,北京102308 [2]航天工程大学电子与光学工程系,北京101416 [3]航天工程大学研究生院,北京101416
出 处:《电讯技术》2020年第9期1055-1063,共9页Telecommunication Engineering
基 金:军委科技委国防科技创新特区项目(17-H863-01-ZT-003-207-XX)。
摘 要:现有基于Nyquist-Shannon采样定理的窄带干扰(Narrowband Interference,NBI)抑制方法存在应用受限于采样率较高的问题。应用压缩感知(Compressive Sensing,CS)理论解决上述问题,利用NBI在频域表现出的块稀疏特性以及直接序列扩频(Direct Sequence Spread Spectrum,DSSS)信号的类噪声特性,提出了基于块稀疏贝叶斯学习(Block Sparse Bayesian Learning,BSBL)框架的DSSS通信NBI抑制模型。实现干扰抑制后,利用传统的CS重构算法实现DSSS信号的压缩域解调。为进一步提高算法性能,将NBI稀疏分块的块内自相关矩阵建模为单位矩阵,提出了信息辅助BSBL(Aid BSBL,ABSBL)算法,设计了基于ABSBL的DSSS通信NBI抑制算法。该算法在保持较好NBI抑制性能的条件下,提高了运算效率并且不依赖NBI的稀疏结构。仿真验证和对比分析结果表明,所提方法能够有效抑制DSSS通信中的NBI,在干扰强度相同的条件下,NBI带宽越小、压缩率越大,算法对NBI的抑制性能越好。The existing narrowband interference(NBI)mitigation algorithms based on Nyquist-Shannon sampling theory are confined to the high sampling rate.The compressive sensing(CS)theory is applied to the solution of the problem.By using the block sparsity nature of NBI and noise-like nature of direct sequence spread spectrum(DSSS)signal in the frequency domain,a block sparse Bayesian leaning(BSBL)framework based DSSS communication NBI mitigation model is proposed.After the NBI mitigation,the traditional CS algorithm is used to achieve the DSSS signal demodulation in the compressed domain.In order to further improve the performance of the method,a BSBL based algorithm,aid BSBL(ABSBL),is proposed,where the intra-correlation matrix is modeled as unit matrix.An NBI mitigation algorithm for DSSS communications based on ABSBL is designed.The efficiency of NBI mitigation is improved while the performance of NBI mitigation is kept by using the proposed algorithm.Besides,the algorithm does not rely on the prior information of the NBI block sparse structure.Comprehensive analysis and comparison of the algorithm demonstrate that the proposed methods are effective in cancelling the NBI in DSSS communications.When the interference intensity is the same,the narrower the NBI and the greater the compression ratio,the better the NBI mitigation performance.
关 键 词:窄带干扰抑制 压缩感知 直扩通信 信息辅助块稀疏贝叶斯学习 块稀疏
分 类 号:TN914.4[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49