检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Sergey G.Kryzhevich Sergei Yu.Pilyugin
机构地区:[1]Department of Mathematical Physics,Saint Petersburg State University,Saint Petersburg 199034,Russia [2]Department of Mathematics and Computer Science,Saint Petersburg State University,Saint Petersburg 199034,Russia
出 处:《Science China Mathematics》2020年第9期1825-1836,共12页中国科学:数学(英文版)
基 金:This work was supported by the Russian Foundation for Basic Researches(Grant No.18-01-00230-a).
摘 要:We study various weaker forms of the inverse shadowing property for discrete dynamical systems on a smooth compact manifold.First,we introduce the so-called ergodic inverse shadowing property(Birkhoff averages of continuous functions along an exact trajectory and the approximating one are close).We demonstrate that this property implies the continuity of the set of invariant measures in the Hausdorff metric.We show that the class of systems with ergodic inverse shadowing is quite broad;it includes all diffeomorphisms with hyperbolic nonwandering sets.Second,we study the so-called individual inverse shadowing(any exact trajectory can be traced by approximate ones,but this shadowing is not uniform with respect to the initial point of the trajectory).We demonstrate that this property is closely related to structural stability andΩ-stability of diffeomorphisms.
关 键 词:inverse shadowing invariant measure HYPERBOLICITY axiom A STABILITY
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33