一种认知雷达信号相关杂波感知方法  

A Perception Method of Signal-Dependent Clutter for Cognitive Radar

在线阅读下载全文

作  者:王龙 王黎佳 陈雷 曹兴龙 WANG Long;WANG Lijia;CHEN Lei;CAO Xinglong(No.91404 Troops of PLA,Qinhuangdao 066001;China Academy of Information and Communications Technology,Beijing 100089;No.63610 Troops of PLA,Korla 841000;No.93175 Troops of PLA,Changchun 130000)

机构地区:[1]91404部队,秦皇岛066001 [2]中国信息通信研究院,北京100089 [3]63610部队,库尔勒841000 [4]93175部队,长春130000

出  处:《舰船电子工程》2020年第7期85-92,共8页Ship Electronic Engineering

摘  要:传统环境感知方法主要集中于信号无关杂波的估计,对信号相关杂波的估计研究较少。在信号相关杂波背景下,以包含发射波形的回波数据作为采样数据,提出一种针对信号相关杂波的迭代感知新方法。首先,基于认知思想构建了环境参数迭代感知的一般性模型。基于该模型,结合信源数检测思想,利用最小描述长度(MDL)准则实现了杂波冲激响应(CIR)向量长度的精确估计;然后,基于随机矩阵理论(RMT)改进了MDL准则,同时给出了热噪声功率的估计值;最后,基于广义似然比准则对杂波协方差矩阵进行迭代感知。该方法在有限采样数据下可实现信号相关杂波的有效估计,仿真结果验证了所提方法的有效性。The traditional methods of environmental perception mainly focus on the estimation of signal-independent clutter,and less on the estimation of Signal-Dependent Clutter(SDC). Taking the echo data which contains the transmitted waveform as the sample data,a new iterated cognition method of SDC is proposed. Firstly,a general iterated cognition model of environmental parameters is constructed based on cognitive method. According to the model,the length of the Clutter Impulse Response(CIR)vector is accurately estimated by using the Minimum Description Length(MDL)criterion combined with the idea of signal source detection. Then MDL criterion is improved based on Random Matrix Theory(RMT),and the estimated value of thermal noise power is given. Finally,the clutter covariance matrix is obtained iteratively based on the generalized likelihood ratio criterion. The proposed method is effective to estimate the SDC under finite samples condition,and the simulation results demonstrate the effectiveness of the proposed method.

关 键 词:认知雷达 信号相关杂波 迭代感知方法 最小描述长度 随机矩阵 

分 类 号:TN958[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象