检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:江军亮 张二华[1] 张丽娜 JIANG Junliang;ZHANG Erhua;ZHANG Lina(School of Computer Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094)
机构地区:[1]南京理工大学计算机科学与工程学院,南京210094
出 处:《计算机与数字工程》2020年第7期1776-1783,共8页Computer & Digital Engineering
基 金:军委装备发展部十三五装备预研领域基金项目(编号:61403120102)资助。
摘 要:传统的多维可视化技术不能满足语音信号多维特征参数可视化的需求,论文研究了一种新的多维可视化方法,该方法以三维Splatting算法为基础,在其他维度上逐维展开,能较直观地显示多维特征的分布规律。说话人的MFCC特征参数是典型的多维特征参数,应用多维可视化技术分析了说话人识别中经过端点检测后识别率往往略有下降的原因,还进一步证明了统计模式识别的前提条件:训练样本与测试样本的分布要保持一致,否则会明显影响识别性能。The traditional multi-dimensional visualization technology can not meet the requirements of multi-dimensional feature parameters visualization of speech signals.This paper studies a new multi-dimensional visualization method based on the three-dimensional Splatting algorithm,which is developed on other dimensions.It can display the distribution law of multi-dimensional features more intuitively.The speaker’s MFCC feature parameters are typical multi-dimensional feature parameters.The multi-dimensional visualization technique is used to analyze the reasons why the recognition rate is slightly decreased after endpoint detection in speaker recognition.The preconditions for statistical pattern recognition are also proved that training samples should be consistent with the test sample distribution,otherwise the recognition performance will be significantly affected.
关 键 词:多维可视化 SPLATTING 语音特征 端点检测
分 类 号:TN912.3[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249