一种改进的二次曲线轮廓度误差的评定方法  被引量:1

An improved evaluation method for profile error of quadratic curve line

在线阅读下载全文

作  者:林志熙 LIN Zhixi(School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China)

机构地区:[1]福建工程学院机械与汽车工程学院,福建福州350118

出  处:《福建工程学院学报》2020年第4期381-386,共6页Journal of Fujian University of Technology

基  金:教育部协同育人项目智能制造与工业机器人应用(201902168023)。

摘  要:提出了一种改进的二次曲线轮廓度误差的评定方法。以最小二乘曲线的焦点坐标作为中心划分正方形网格,在其中按一定规则设定标志点,若标志点配对拟合曲线计算所得轮廓度误差过大就将其剔除。然后在误差较小的区域进一步细分网格并配对拟合曲线,再以多次迭代运算的方法最终求得最小条件法下的轮廓度误差值。该方法搜索速度快,计算精度高,适用于任意平面二次曲线的轮廓度误差评定,辅以MATLAB软件实现误差求解的可视化,最后实例证明该算法的可靠性。An improved evaluation method for profile error of quadratic curve was proposed.The coordinates of the focus of the least squares curve was taken as the center to divide the square grid,in which mark points were arranged around the focus according to a certain rule,and if the profile error calculated from the matched fitting curve of the mark point was too large,the point would be eliminated.The grid was then further subdivided in areas with smaller errors and the fitted curves were paired.At last,the profile error under the minimum condition method could be calculated by the method of multiple iterative operations.The method is fast in search,high in calculation accuracy,and is suitable for the evaluation of profile error of any plane’s quadratic curve.Visualization of error solving can be realized with the MATLAB software.Test results show the reliability of the algorithm.

关 键 词:线轮廓度 MATLAB 最小条件法 二次曲线 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象