检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张志刚[1] 陈巧云 马俊[1] Zhang Zhigang;Chen Qiaoyun;Ma Jun(Jiaozuo University,Jiaozuo 454000,China)
机构地区:[1]焦作大学,河南焦作454000
出 处:《煤矿机械》2020年第9期183-186,共4页Coal Mine Machinery
基 金:河南省科技厅软科学项目(182400410073)。
摘 要:针对采煤机齿轮故障振动信号难以准确获取故障特征的问题,提出了一种利用小波包结合高斯混合EM聚类的齿轮故障诊断方法。首先对故障信号进行小波包分解和重构,得到其高频率尺度下的能量值,然后以此作为故障样本属性,结合高斯混合EM聚类算法建立故障模型数据库,最后将实时信号与故障库对比进行分类诊断。实验仿真结果表明,该方法对齿轮的几种典型故障表现出了良好的诊断能力,且可以实现采煤机不停机在线诊断,对提高采煤机故障诊断智能化水平具有较高的参考价值。In order to solve the problem that it is difficult to get the fault features of gear fault vibration signals of shearer accurately,a fault diagnosis method based on wavelet packet and Gaussian mixture EM clustering was proposed.Firstly,the fault signal was decomposed and reconstructed by wavelet packet to get its energy value in high frequency scale,then it was used as the fault sample attribute and the fault model database was established by combining the Gauss mixture EM clustering algorithm.Finally,the real-time signal was compared with the fault database to realize classification and diagnosis.The experiment simulation results show that this method has a good diagnostic ability for several typical faults of gear and can realize the on-line diagnosis of shearer without shutdown,which has a high reference value for improving the intelligent level of shearer fault diagnosis.
分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置] TD421.6[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

