检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李文静[1] 王瑞瑞[1] 石伟 苏婷婷 LI Wenjing;WANG Ruirui;SHI Wei;SU Tingting(Precision Forestry Key Laboratory of Beijing,Beijing Forestry University,Beijing 100083,China;China Aerospace Academy of Systems Science and Engineering,Beijing 100083,China)
机构地区:[1]北京林业大学精准林业北京市重点实验室,北京100083 [2]中国航天系统科学与工程研究院,北京100083
出 处:《福建农林大学学报(自然科学版)》2020年第5期639-645,共7页Journal of Fujian Agriculture and Forestry University:Natural Science Edition
基 金:国家自然科学基金资助项目(41971376、41201446).
摘 要:基于无人机多光谱影像,选取郁闭度较高的阔叶林区作为研究对象,在提取植被特征的基础上,采用双边滤波和面向对象的多尺度分割方法,选取最佳分割参数组合,得到单木树冠.结果表明,与直接对原始真彩色影像采用多尺度分割的结果相比,改进方法的过分割现象明显减少,分割准确率达到76.63%,F测度为80.24%,说明该方法能有效减少背景对分割精度的影响,有效抑制传统多尺度分割方法造成的过分割问题,可对郁闭度较高的阔叶林区单木树冠进行自动提取.Bilateral filtering and multi-scale segmentation were applied to vegetation characteristics information extracted from UAV multi-spectral images of broadleaf forest with high canopy density.Upon the optimum combinations of segmentation parameters,single crown images were generated.Compared with the results directly segmented from the original true color multi-scale images,oversegmentation was noticeably reduced from the improved method,resulting in a segmentation accuracy of 76.63%and F measure of 80.24%.It can be concluded that the proposed method can effectively lower the impact of background on compromising segmentation accuracy,and effectively reduce over-segmentation arisen from multi-scale segmentation by conventional methods,which can be used for the automatic tree crown extraction of broadleaf forest with high canopy density.
关 键 词:无人机多光谱影像 多尺度分割 单木树冠 植被指数 双边滤波
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117