结合时间序列分解和神经网络的河流溶解氧预测  被引量:5

Prediction of River Dissolved Oxygen Combined Times Series Decomposition and Neural Network

在线阅读下载全文

作  者:卢毅敏[1,2,3] 张红 LU Yimin;ZHANG Hong(Key Lab of Spatial Data Mining and Information Sharing of Ministry of Education,Fuzhou University,Fuzhou 350108,China;National Engineering Research Center of Geospatial Information Technology,Fuzhou University,Fuzhou 350108,China;Academy of Digital China(Fujian),Fuzhou 350003,China)

机构地区:[1]福州大学空间数据挖掘与信息共享教育部重点实验室,福建福州350108 [2]福州大学地理空间信息技术国家地方联合工程研究中心,福建福州350108 [3]数字中国研究院(福建),福建福州350003

出  处:《华侨大学学报(自然科学版)》2020年第5期659-666,共8页Journal of Huaqiao University(Natural Science)

基  金:国家重点研发计划项目(2017YFB0503500)。

摘  要:为克服小流域数据资料少,河流溶解氧的非平稳特性及动态变化造成的预测困难,提出结合具有自适应噪声的完整集成经验模态分解(CEEMDAN)和Elman动态神经网络的预测方法.使用CEEMDAN方法对原始溶解氧时序数据进行平稳化处理及降噪,提取溶解氧随时间变化的波动特征、周期特征,以及长期趋势,通过计算样本熵(SE)值,将相似的特征序列合并,以减小误差累积,对合并后的新序列分别采用布谷鸟搜索(CS)算法优化的Elman模型进行预测,将各预测值叠加,得到最终预测结果.实验结果表明:CEEMDAN-SE-CS-Elman方法平均绝对误差(EMA)为0.14;平均绝对百分误差(EMPA)为2.07%;均方根误差(ERMS)为0.24;可决系数(R2)达到0.9516,精度较其他时间序列预测模型有所提高.In order to overcome the difficulties of prediction caused by the unstable characteristics and dynamic changes of river dissolved oxygen in small watershed with few data,a prediction method was proposed based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)and Elman dynamic neural network.The CEEMDAN method was used to stabilize and reduce the noise of the original dissolved oxygen time series data.The fluctuation characteristics,periodic characteristics and long-term trend of dissolved oxygen with time change were extracted.By calculating the sample entropy(SE)value,several sequences with similar feature were combined to reduce the error accumulation.The Elman model optimized by the cuckoo search(CS)algorithm was adopted to predict the new recombined sequences respectively,and thefinal prediction result was obtained by superposing the prediction results of each sequence.The experimental results showed that the mean absolute error(EMA)of CEEMDAN-SE-CS-Elman method was 0.14,the mean absolute percentage error(EMPA)was 2.07%,the root mean square error(ERMS)was 0.24,and the coefficient of determination(R2)reached 0.9516.The prediction accuracy was improved compared with other time series forecasting models.

关 键 词:河流溶解氧 预测模型 CEEMDAN 样本熵 布谷鸟搜索算法 ELMAN神经网络 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] X832[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象