基于循环神经网络的油田特高含水期产量预测方法  被引量:55

Production prediction at ultra-high water cut stage via Recurrent Neural Network

在线阅读下载全文

作  者:王洪亮 穆龙新[1] 时付更[1] 窦宏恩[1] WANG Hongliang;MU Longxin;SHI Fugeng;DOU Hongen(PetroChina Research Institute of Petroleum Exploration&Development,Beijing 100083,China)

机构地区:[1]中国石油勘探开发研究院,北京100083

出  处:《石油勘探与开发》2020年第5期1009-1015,共7页Petroleum Exploration and Development

基  金:国家科技重大专项“大型油气田及煤层气开发”(2016ZX05016-006)。

摘  要:根据油田生产历史数据利用深度学习方法预测油田特高含水期产量,并进行了实验验证和应用效果分析。考虑到传统全连接神经网络(FCNN)无法描述时间序列数据的相关性,基于一种循环神经网络(RNN)即长短期记忆神经网络(LSTM)来构建油田产量预测模型。该模型不仅考虑了产量指标与其影响因素之间的联系,还兼顾了产量随时间变化的趋势和前后关联。利用国内某中高渗透砂岩水驱开发油田生产历史数据进行特高含水期产量预测,并与传统水驱曲线方法和FCNN的预测结果比较,发现基于深度学习的LSTM预测精度更高,针对油田生产中复杂时间序列的预测结果更准确。利用LSTM模型预测了另外两个油田的月产油量,预测结果较好,验证了方法的通用性。A deep learning method for predicting oil field production at ultra-high water cut stage from the existing oil field production data was presented, and the experimental verification and application effect analysis were carried out. Since the traditional Fully Connected Neural Network(FCNN) is incapable of preserving the correlation of time series data, the Long Short-Term Memory(LSTM) network, which is a kind of Recurrent Neural Network(RNN), was utilized to establish a model for oil field production prediction. By this model, oil field production can be predicted from the relationship between oil production index and its influencing factors and the trend and correlation of oil production over time. Production data of a medium and high permeability sandstone oilfield in China developed by water flooding was used to predict its production at ultra-high water cut stage, and the results were compared with the results from the traditional FCNN and water drive characteristic curves. The LSTM based on deep learning has higher precision, and gives more accurate production prediction for complex time series in oil field production. The LSTM model was used to predict the monthly oil production of another two oil fields. The prediction results are good, which verifies the versatility of the method.

关 键 词:产量预测 特高含水期 机器学习 长短期记忆神经网络 人工智能 

分 类 号:TP392[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象