检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张逸飞 付玉慧[1] ZHANG Yifei;FU Yuhui(Navigation College, Dalian Maritime University, Dalian 116026, Liaoning, China)
出 处:《上海海事大学学报》2020年第3期47-52,共6页Journal of Shanghai Maritime University
摘 要:为提高船舶交通事故的预测精度,提出将自回归综合移动平均(autoregressive integrated moving average,ARIMA)模型与BP神经网络组合的船舶交通事故预测方法。该方法考虑船舶交通事故的复杂性和非线性因素,充分结合ARIMA模型与BP神经网络的优势,分别从简单加权和残差优化角度对ARIMA模型与BP神经网络的不同组合方法进行比较研究,并将其应用于2000—2018年英国籍船舶交通事故预测中。结果表明:与ARIMA模型、BP神经网络和ARIMA-BP的简单加权组合预测方法进行对比,ARIMA-BP的残差优化组合预测方法的预测精度最高,其均方根误差、平均绝对误差和平均绝对百分比误差分别为7.16、6.0和4.9%。本文提出的船舶交通事故预测方法可以为相关人员的决策提供指导。To improve the prediction accuracy of ship traffic accidents,a prediction method of ship traffic accidents is proposed,which combines the autoregressive integrated moving average(ARIMA)model with BP neural network.In this method,the complexity and nonlinear factors of ship traffic accidents are considered,the advantages of ARIMA model and BP neural network are combined fully,and the different combination methods of ARIMA model and BP neural network are compared from the perspective of simple weighting and residual optimization,respectively.Traffic accidents of British ships from 2000 to 2018 are predicted by different methods.The results show that,compared with ARIMA model,BP neural network and the simple weighted combination prediction method of ARIMA-BP,the residual optimization combination prediction method of ARIMA-BP is of the highest prediction accuracy,and the root mean square error,the mean absolute error and the mean absolute percentage error are 7.16,6.0 and 4.9%,respectively.The ship traffic accident prediction method proposed in this paper can provide guidance for the decision-making of the related personnel.
分 类 号:U698.6[交通运输工程—港口、海岸及近海工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70