Polynomial robust observer implementation based passive synchronization of nonlinear fractional-order systems with structural disturbances  被引量:1

在线阅读下载全文

作  者:Alain Soup Tewa KAMMOGNE Michaux NoubéKOUNTCHOU Romanic KENGNE Ahmad Taher AZAR Hilaire Bertrand FOTSIN Soup Teoua Michael OUAGNI 

机构地区:[1]LAMACETS,Faculty of Sciences,University of Dschang,P.O.Box 96,Cameroon [2]Nuclear Technology Section,Institute of Geological and Mining Research,P.O.Box 4110,Yaoundé,Cameroon [3]Robotics and Internet-of-Things Lab(RIOTU),Prince Sultan University,Riyadh 11586,Saudi Arabia [4]Faculty of Computers and Artificial Intelligence,Benha University,Benha 13511,Egypt [5]Laboratoire de Mécanique et de Modélisation des Systèmes Physique,Faculty of Sciences,University of Dschang,P.O.Box 96,Cameroon

出  处:《Frontiers of Information Technology & Electronic Engineering》2020年第9期1369-1386,共18页信息与电子工程前沿(英文版)

摘  要:A robust polynomial observer is designed based on passive synchronization of a given class of fractional-order Colpitts(FOC)systems with mismatched uncertainties and disturbances.The primary objective of the proposed observer is to minimize the effects of unknown bounded disturbances on the estimation of errors.A more practicable output-feedback passive controller is proposed using an adaptive polynomial state observer.The distributed approach of a continuous frequency of the FOC is considered to analyze the stability of the observer.Then we derive some stringent conditions for the robust passive synchronization using Finsler’s lemma based on the fractional Lyapunov stability theory.It is shown that the proposed method not only guarantees the asymptotic stability of the controller but also allows the derived adaptation law to remove the uncertainties within the nonlinear plant’s dynamics.The entire system using passivity is implemented with details in PSpice to demonstrate the feasibility of the proposed control scheme.The results of this research are illustrated using computer simulations for the control problem of the fractional-order chaotic Colpitts system.The proposed approach depicts an efficient and systematic control procedure for a large class of nonlinear systems with the fractional derivative.

关 键 词:Robust passive observer Adaptive synchronization Lyapunov theory FRACTIONAL-ORDER Polynomial observer Uncertain parameters H∞-performance 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置] O415[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象