检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陆霞[1] 张国华[1] LU Xia;ZHANG Guohua(Taizhou College Information Engineering Department,Nanjing Normal University,Taizhou Jiangsu 225300,China)
出 处:《激光杂志》2020年第9期72-76,共5页Laser Journal
基 金:江苏省高校自然科学研究面上项目(No.19KJD520008);泰州市科技支撑计划(社会发展)项目(No.TS201927,SSF20170105)。
摘 要:针对众多监测方法中存在的数据信息重复率高、监测精度较低的问题,很难获得准确的物联网数据监测结果。为此,提出一种基于光纤传感技术的物联网感知数据监测方法。通过光纤传感技术对光波相位信息合理解调,获得环境参数的具体变化;为了降低数据之间信息的冗余度,对海量数据实施降维;运用支持向量机方法对数据实施分类并识别;根据标签约束条件,从而获取到物联网中的数据特征;采用构建出数据模糊矩阵来判断数据的一致性,根据调整算法实施调节,获取到数据的动态权重,从而完成感知数据监测。仿真实验结果表明:所提方法减少其他因素对数据感知带来的影响,提高了物联网数据的监测精度,其稳定性高、监测速度快,具有优质的鲁棒性。In view of the problems of high data information repetition rate and low monitoring accuracy in many monitoring methods,it is difficult to obtain accurate monitoring results of the Internet of things data.To this end,a method for sensing the Internet of things data based on optical fiber sensing technology is proposed.The reasonable demodulation of optical phase information through fiber optic sensing technology is carried out to obtain specific changes in environmental parameters.In order to reduce the redundancy of information among data,dimensionality reduction is implemented for massive data.The support vector machine method is used to classify and identify data.According to the label constraints,data characteristics in Internet of things are obtained.The fuzzy matrix of data is used to judge the data consistency,and the algorithm adjustment is performed to obtain the dynamic weight of the data,thereby the sensing data monitoring is completed.Simulation results show that the proposed method reduces the impact of other factors on data perception,improves the monitoring accuracy of IoT data,has high stability,fast monitoring speed,and high-quality robustness.
关 键 词:光纤传感技术 数据监测 动态权重赋值 约束条件 模糊判断矩阵
分 类 号:TN929.11[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.248