检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈丹敏 周福娜[2] 王清贤[1] CHEN Danmin;ZHOU Funa;WANG Qingxian(Information Engineering University, Zhengzhou 450001, China;Shanghai Maritime University, Shanghai 201306, China)
机构地区:[1]信息工程大学,河南郑州450001 [2]上海海事大学,上海201306
出 处:《信息工程大学学报》2020年第2期153-158,共6页Journal of Information Engineering University
基 金:国家自然科学基金资助项目(U1604158)。
摘 要:基于深度学习的故障诊断模型的精确度依赖于带标签的样本数量和信息使用方式。实际的工业控制获取的数据往往既有一维的信号序列又有二维的图像。基于深度学习的故障诊断方法仅利用一类数据进行故障诊断会造成信息的浪费,需要将多源异构信息进行融合。但工业控制中带标签的故障样本量很少,仅利用故障样本不能获得精度较高的故障诊断模型。迁移学习是运用已有的知识对不同但相关领域问题进行求解的一种新方法。通过迁移学习,利用在ImageNet数据集中训练好的VGG16网络作为特征抽取器,提取故障图像的特征,然后将故障图像特征和一维信号特征进行融合,以获得一个精确率较高的故障诊断模型。使用凯斯西储大学轴承数据集证明了该方法的有效性。The accuracy of the fault diagnosis model based on deep learning depends on the number of labeled samples and the way of information using.The data obtained in industrial control often have both one-dimensional signal sequences and two-dimensional images.The fault diagnosis method based on deep learning only uses one kind of data for fault diagnosis,which will cause the waste of information.Therefore,multi-source heterogeneous information needs to be fused.However,the number of labeled fault samples in industrial control is very small,by which a high-precision fault diagnosis model could not be obtained.Transfer learning is a new method to solve problems in different but related fields using existing knowledge.Through transfer learning,the VGG16 network trained in the ImageNet data set is used as a feature extractor to extract the feature of the fault image,and then the fault image feature and one-dimensional signal feature are fused to obtain a fault diagnosis model with high accuracy.In this paper,the effectiveness of this method is proved by using the Case Western Reserve University bearing data set.
分 类 号:TP399[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.156.237