基于改进遗传算法的船舶管路布局设计  被引量:14

Ship Pipe Route Design Based on Improved Genetic Algorithm

在线阅读下载全文

作  者:董宗然 楼偶俊[1,2] 管官[3] DONG Zongran;LOU Oujun;GUAN Guan(School of Software,Dalian University of Foreign Languages,Dalian,Liaoning 116044,China;Research Center for Language Intelligence,Dalian University of Foreign Languages,Dalian,Liaoning 116044,China;Ship CAD Engineering Center,Dalian University of Technology,Dalian,Liaoning 116023,China)

机构地区:[1]大连外国语大学软件学院,辽宁大连116044 [2]大连外国语大学语言智能研究中心,辽宁大连116044 [3]大连理工大学船舶CAD工程中心,辽宁大连116023

出  处:《计算机工程与应用》2020年第19期252-260,共9页Computer Engineering and Applications

基  金:辽宁省博士科研启动基金(No.2019-BS-061);大连外国语大学科研基金(No.2018XJYB25)。

摘  要:针对船舶管路布局设计中的路径规划问题提出一种改进型遗传算法求解方法。建立船舶管路布局设计问题的模型空间、约束条件和优化目标;提出一种基于连接点网格的定长编码方法,结合该编码方法设计了适合改进遗传算法应用的适应度函数和交叉、变异算子,定长编码可降低遗传算子设计复杂度和非法个体修补代价;提出在进化流程中嵌入以"去折弯"和"改模式"两种改善型变异方法构建的爬山操作,以提升算法收敛性和寻优能力。通过仿真实验验证所提算法具有可行性和先进性。In order to solve the Ship Pipe Route Design(SPRD)problem, an improved Genetic Algorithm(GA)optimization method is proposed. Firstly, the model space, constraint conditions and optimization objectives are established for the SPRD problem. Then a fixed-length encoding method based on connection-grids is proposed. Combined with this method, the fitness function and genetic operators such as crossover and mutation are designed for the improved GA. The fixed-length encoding simplifies the implementation of the genetic operators, and can reduce the cost of illegal individual repair. In addition, two improved mutation methods, i.e.,"bend-remove"and"mode-change", are embedded in the evolutionary process as the hill-climbing operator to improve the convergence and optimization abilities of the algorithm. Finally,a simulation experiment is conducted to verify the feasibility and advancement of the proposed algorithm.

关 键 词:船舶管路布局设计 遗传算法 定长编码 

分 类 号:TP399[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象