联合均值滤波与泊松核双边滤波降噪算法研究  被引量:9

Image Denoising Research of Combining Mean Filtering with Poisson Kernel Improved Bilateral Filtering

在线阅读下载全文

作  者:杨赞伟 郑亮亮[1] 曲宏松[1] 吴勇[1] YANG Zan-wei;ZHENG Liang-liang;QU Hong-song;WU Yong(Changchun Institute of Optics,Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun Jilin 130033,China;University of Chinese Academy of Sciences,Beijing 100049,China)

机构地区:[1]中国科学院长春光学精密机械与物理研究所,吉林长春130033 [2]中国科学院大学,北京100049

出  处:《计算机仿真》2020年第9期460-463,468,共5页Computer Simulation

基  金:国家重点研发项目(2016YFB0501202)。

摘  要:针对均值滤波算法降噪精度低、降噪后图像信息丢失严重以及双边滤波在参数选择时不具有自适应性、噪声点检测不精确,容易将噪声放大等问题,同时为了能够抑制图像噪声并保持其边缘信息和细节信息,提出了一种结合均值滤波与基于泊松核改进的双边滤波图像降噪算法。首先利用均值滤波对噪声图像进行预处理,然后再由利用泊松核改进的双边滤波对预处理图像进行最终降噪,得出两种算法结合既可以有效地抑制噪声,同时又可以保护图像中的边缘细节。实验结果表明,与传统均值滤波以及均值滤波联合传统双边滤波算法相比,改进算法在降噪的同时,又能够保留细节信息,并能够提升图像预处理的显示效果,具有较高的实用价值。Aiming at the low denoising accuracy and the serious loss of image information of the mean filtering,a method of combining mean filtering with Poisson kernel improved bilateral filtering is put forward to reduce noise and retain the detailed information of images.The bilateral filtering is not adaptive in parameter selection and its detection of noise points is inaccurate.Firstly,the noise of the image was pre-processed by mean filtering,and then the preprocessed image was finally denoised by the bilateral filtering improved with Poisson kernel.The combination of the two algorithms can achieve the improvement of denoising and protecting the edge details.The experiment results show that the proposed algorithm can effectively protect the detailed information and reduce the noise while improving the image quality,compared with the traditional mean filtering and the mean filtering combined with the traditional bilat⁃eral filtering.Therefore,the algorithm of this paper has high practical value.

关 键 词:泊松核 双边滤波 均值滤波 图像降噪 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象