检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王雨 刘琳琳[1] WANG Yu;LIU Lin-lin(School of Computer and Communications Engineering,Liaoning University of Petroleum and Chemical Technology,Fushun 113001,China)
机构地区:[1]辽宁石油化工大学计算机与通信工程学院,抚顺113001
出 处:《价值工程》2020年第29期200-201,共2页Value Engineering
摘 要:本文将机器学习算法应用于网络优化过程,基于网络流量分类提出一种快速准确的路由选路方案,可应用于多种复杂网络环境。基于主成分分析及半监督聚类理论提出了一种基于QoS类别的网络流量分类方案,根据分类结果进行路由选路,选路过程采用Q-Learning算法,通过对Q表的更新进行最佳路径的选择。实验结果表明,该方案具有良好的网络优化效果。In this paper,machine learning algorithm is applied to network optimization process,and a fast and accurate routing scheme based on network traffic classification is proposed,which can be applied to a variety of complex network environments.Based on principal component analysis and semi-supervised clustering theory,a network traffic classification scheme based on QoS categories is proposed.According to the classification results,the routing is selected.Q-learning algorithm is adopted in the routing process,and the optimal path is selected by updating the Q table.The experimental results show that the scheme has a good network optimization effect.
关 键 词:机器学习 Q-LEARNING SDN QoS路由分配
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.140.250.157