基于流式计算的网络排队时延预测技术研究  被引量:1

Research on Network Queuing Delay Prediction Technology Based on Flow Calculation

在线阅读下载全文

作  者:王亮[1] 王敏[2] 王晓鹏[2] 罗威[2] 冯瑜 WANG Liang;WANG Min;WANG Xiaopeng;LUO Wei;FENG Yu(91054 Troops of Chinese People’s Liberation Army,Beijing 102442,China;China Ship Development and Design Center,Wuhan 430064,China;School of Electronic Information,Wuhan University,Wuhan 430072,China)

机构地区:[1]中国人民解放军91054部队,北京102442 [2]中国舰船研究设计中心,武汉430064 [3]武汉大学电子信息学院,武汉430072

出  处:《计算机工程》2020年第10期289-293,300,共6页Computer Engineering

基  金:国防基础科研计划(JCKY2018207C121)。

摘  要:网络排队时延对了解网络带宽利用率与分析拥塞级别具有重要意义,而传统时延测量技术对网络流量和往返时延预测的时效性差且准确性低,容易忽略突发的网络延时变化。结合交换机内部网络排队时延的细粒度特性和多变性,提出基于LSTM模型的多时间尺度融合预测方法。利用带内网络遥测技术获取并转换网络细粒度参数,为预测模型提供延时和利用率特征,构建基于长短期记忆网络(LSTM)的多时间尺度融合预测模型(LSTM-Merge),将不同采样尺度数据进行融合,并采用流式计算框架对网络排队时延进行预测。实验结果表明,与LSTM、SVR等预测模型相比,LSTM-Merge模型所得预测结果的均方根误差更小,3种时间尺度融合模型较其他数目时间尺度融合模型所得预测结果的实时性更好且准确性更高。Network queuing delay is of great significance for understanding network bandwidth utilization and analyzing congestion level.However,traditional delay measurement technology has poor timeliness and accuracy in predicting network traffic and round-trip delay,and it is easy to ignore sudden network delay changes.Combined with the fine-grained characteristics and variability of queuing delay in the internal network of switch,this paper proposes a multi-time scale fusion prediction method based on LSTM model.In-band network telemetry technology is used to obtain and transform fine-grained network parameters to provide delay and utilization characteristics for the prediction model.A multi-time-scale fusion prediction model(LSTM-Merge)based on Long Short-Term Memory(LSTM)network is constructed to fuse data of different sampling scales,and the flow calculation framework is used to predict the network queuing delay.Experimental results show that the Root Mean Square Error(RMSE)of the prediction results of the LSTM-Merge model is smaller than that of the LSTM,SVR and other models.Also,the real-time performance and accuracy of the prediction results of the three time scales fusion model are better than those of other scales.

关 键 词:长短期记忆网络融合模型 网络排队时延 时间序列预测 流式计算 机器学习 

分 类 号:TP393.18[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象