Numerical and experimental study of twin-fluid two-phase internal-mixing atomizer to develop maximum entropy method  被引量:4

在线阅读下载全文

作  者:Alireza MOHAMMADI Fathollah OMMI 

机构地区:[1]Department of Mechanical Engineering.Tarbiat Modares University,Tehran 14115-111,Iran

出  处:《Chinese Journal of Aeronautics》2020年第9期2281-2294,共14页中国航空学报(英文版)

摘  要:This paper presents an analytical, numerical, and experimental study on atomization characteristics and droplet distribution of a twin-fluid two-phase internal mixing atomizer to develop a Maximum Entropy Method(MEM). A two-phase Eulerian-Lagrangian method is utilized for atomization modeling of the inside and outside atomizer. In order to modify energy and momentum sources in the MEM, parametric studies are performed, and experimental tests are carried out to verify the results by applying the shadowgraph method. An advanced test stand is developed to prepare a wide range of changes in atomization characteristics and mixing ratios. A high degree of consistency is found between numerical results from the developed MEM and experimental tests with different gas-phase pressures and liquid flow rates. The droplet diameter and velocity distribution are reviewed based on various Weber numbers, sources of energy, and momentum. Turbulence modeling assists to estimate the breakup length and time scale precisely in the developed MEM, and distribution ranges with mean values are achieved. With reference to a strong correlation between upstream turbulence flow and the developed MEM verified by experimental tests, an ideal droplet size and velocity distribution prediction is observed.

关 键 词:ATOMIZATION Droplet distribution Internal-mixing atomizer Maximum entropy method Shadowgraph technique Test stand 

分 类 号:V216[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象