检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:江杰波 陈珂 施永贵 张航伟 李洪杰[2] JIANG Jiebo;CHEN Ke;SHI Yonggui;ZHANG Hangwei;LI Hongjie(Fujian Hoshing Hi-Tech Industrial Co.,Ltd.,Fuzhou 350003,China;School of Electrical Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
机构地区:[1]福建和盛高科技产业有限公司,福建福州350003 [2]西安交通大学电气工程学院,陕西西安710049
出 处:《电力工程技术》2020年第5期43-48,共6页Electric Power Engineering Technology
摘 要:针对变电站环境局部放电识别面临的不可控干扰多、初始参数确定难的问题,提出将具有自组织竞争识别、抗干扰性强的Kohonen网络用于干扰环境下绝缘缺陷的局部放电识别。首先,通过设计变电站放电典型绝缘缺陷获取多个样本数据,提取统计特征用于Kohonen网络训练。其次,分析Kohonen网络竞争层节点数对识别效果的影响,得出针对样本数据的最佳识别参数。最后,将Kohonen网络与常用的模式识别算法在同等条件下进行对比,验证其在多种放电识别时具有高稳定性与高识别率,及用于变电站环境局部放电识别的优越性。Aim at the problem that the uncontrollable interference faced by the partial discharge identification in substation,and the initial parameters of the existing identification method are difficult to determine. Design defects that meet the discharge characteristics of the substation. Multiple sample datas are collected combined with the statistical characteristic parameters extraction method. Based on the Kohonen network with self-organizing competition recognition and strong anti-interference characteristics,new method suitable for partial discharge identification in substation is presented. By exploring the influence of the Kohonen network’s parameters on its recognition effect,the recognition effect is optimized. Then by comparing the network with the commonly used pattern recognition algorithm under the same conditions,high stability and high recognition rate of Kohonen network are proved,and excellent performance in partial discharge identification of substation is verified.
关 键 词:KOHONEN网络 典型绝缘缺陷 局部放电 模式识别 统计特征参数
分 类 号:TM855[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170